IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v101y2017icp123-139.html
   My bibliography  Save this article

Stochastic user equilibrium traffic assignment with equilibrated parking search routes

Author

Listed:
  • Pel, Adam J.
  • Chaniotakis, Emmanouil

Abstract

In this paper we define and formulate the concept of parking search routes (PSR) where a driver visits a sequence of parking locations until the first vacant parking spot is found and in doing so may account for (expected) parking probabilities. From there we define and formulate the stochastic user equilibrium (SUE) traffic assignment in which no driver, by unilaterally changing its PSR, can lower its perceived expected generalized costs. Recognizing the interdependency between PSR flows, travel times and parking probabilities, we propose a queuing model in order to compute endogenous parking probabilities accounting for these factors as well as maximum admissible search times. To solve the SUE assignment with equilibrated PSR we propose a solution algorithm, including a method for PSR choice set generation. The model is implemented and applied both to a number of experimental cases to verify its properties and to a real-life setting to illustrate its usefulness in parking-related studies.

Suggested Citation

  • Pel, Adam J. & Chaniotakis, Emmanouil, 2017. "Stochastic user equilibrium traffic assignment with equilibrated parking search routes," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 123-139.
  • Handle: RePEc:eee:transb:v:101:y:2017:i:c:p:123-139
    DOI: 10.1016/j.trb.2017.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516305525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shoup, Donald C., 2006. "Cruising for parking," Transport Policy, Elsevier, vol. 13(6), pages 479-486, November.
    2. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    3. D. Y. Barrer, 1957. "Queuing with Impatient Customers and Indifferent Clerks," Operations Research, INFORMS, vol. 5(5), pages 644-649, October.
    4. Geroliminis, Nikolas, 2015. "Cruising-for-parking in congested cities with an MFD representation," Economics of Transportation, Elsevier, vol. 4(3), pages 156-165.
    5. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    6. Lam, William H.K. & Li, Zhi-Chun & Huang, Hai-Jun & Wong, S.C., 2006. "Modeling time-dependent travel choice problems in road networks with multiple user classes and multiple parking facilities," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 368-395, June.
    7. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    8. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    9. Liya Guo & Shan Huang & Jun Zhuang & Adel Sadek, 2013. "Modeling Parking Behavior Under Uncertainty: A Static Game Theoretic versus a Sequential Neo-additive Capacity Modeling Approach," Networks and Spatial Economics, Springer, vol. 13(3), pages 327-350, September.
    10. Boyles, Stephen D. & Tang, Shoupeng & Unnikrishnan, Avinash, 2015. "Parking search equilibrium on a network," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 390-409.
    11. Cao, Jin & Menendez, Monica, 2015. "System dynamics of urban traffic based on its parking-related-states," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 718-736.
    12. Chaniotakis, Emmanouil & Pel, Adam J., 2015. "Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 228-239.
    13. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    14. Bifulco, Gennaro Nicola, 1993. "A stochastic user equilibrium assignment model for the evaluation of parking policies," European Journal of Operational Research, Elsevier, vol. 71(2), pages 269-287, December.
    15. Zhi-Chun Li & William Lam & S. Wong & Hai-Jun Huang & Dao-Li Zhu, 2008. "Reliability Evaluation for Stochastic and Time-dependent Networks with Multiple Parking Facilities," Networks and Spatial Economics, Springer, vol. 8(4), pages 355-381, December.
    16. B J Waterson & N B Hounsell & K Chatterjee, 2001. "Quantifying the potential savings in travel time resulting from parking guidance systems — a simulation case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(10), pages 1067-1077, October.
    17. D. Y. Barrer, 1957. "Queuing with Impatient Customers and Ordered Service," Operations Research, INFORMS, vol. 5(5), pages 650-656, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    2. Zhang, Mingyuan & Yang, Xiangjie & Zhang, Juan & Li, Gang, 2022. "Post-earthquake resilience optimization of a rural “road-bridge†transportation network system," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Yuan, Quan & Ye, Yujian & Tang, Yi & Liu, Yuanchang & Strbac, Goran, 2022. "A novel deep-learning based surrogate modeling of stochastic electric vehicle traffic user equilibrium in low-carbon electricity–transportation nexus," Applied Energy, Elsevier, vol. 315(C).
    4. Rodríguez, Andrés & Cordera, Rubén & Alonso, Borja & dell'Olio, Luigi & Benavente, Juan, 2022. "Microsimulation parking choice and search model to assess dynamic pricing scenarios," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 253-269.
    5. Nourinejad, Mehdi & Bahrami, Sina & Roorda, Matthew J., 2018. "Designing parking facilities for autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 110-127.
    6. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2018. "Stochastic user equilibrium with a bounded choice model," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 254-280.
    7. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    8. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wu & Wei Liu & Fangni Zhang & Vinayak Dixit, 2021. "A New Flexible Parking Reservation Scheme for the Morning Commute under Limited Parking Supplies," Networks and Spatial Economics, Springer, vol. 21(3), pages 513-545, September.
    2. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    3. Gu, Ziyuan & Safarighouzhdi, Farshid & Saberi, Meead & Rashidi, Taha H., 2021. "A macro-micro approach to modeling parking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 220-244.
    4. Xiao, Jun & Lou, Yingyan & Frisby, Joshua, 2018. "How likely am I to find parking? – A practical model-based framework for predicting parking availability," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 19-39.
    5. Leclercq, Ludovic & Sénécat, Alméria & Mariotte, Guilhem, 2017. "Dynamic macroscopic simulation of on-street parking search: A trip-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 268-282.
    6. Cao, Jin & Menendez, Monica, 2018. "Quantification of potential cruising time savings through intelligent parking services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 151-165.
    7. Tian, Qiong & Yang, Li & Wang, Chenlan & Huang, Hai-Jun, 2018. "Dynamic pricing for reservation-based parking system: A revenue management method," Transport Policy, Elsevier, vol. 71(C), pages 36-44.
    8. Zhibin Chen & Stephen Spana & Yafeng Yin & Yuchuan Du, 2019. "An Advanced Parking Navigation System for Downtown Parking," Networks and Spatial Economics, Springer, vol. 19(3), pages 953-968, September.
    9. Ling-Ling Xiao & Tian-Liang Liu & Hai-Jun Huang, 2021. "Tradable permit schemes for managing morning commute with carpool under parking space constraint," Transportation, Springer, vol. 48(4), pages 1563-1586, August.
    10. Lu, Xiao-Shan & Guo, Ren-Yong & Huang, Hai-Jun & Xu, Xiaoming & Chen, Jiajia, 2021. "Equilibrium analysis of parking for integrated daily commuting," Research in Transportation Economics, Elsevier, vol. 90(C).
    11. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    12. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.
    13. He, Fang & Yin, Yafeng & Chen, Zhibin & Zhou, Jing, 2015. "Pricing of parking games with atomic players," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 1-12.
    14. Zakharenko, Roman, 2016. "The time dimension of parking economics," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 211-228.
    15. Zipeng Zhang & Ning Zhang, 2021. "Early Bird Scheme for Parking Management: How Does Parking Play a Role in the Morning Commute Problem," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    16. Karaliopoulos, Merkouris & Katsikopoulos, Konstantinos & Lambrinos, Lambros, 2017. "Bounded rationality can make parking search more efficient: The power of lexicographic heuristics," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 28-50.
    17. Wang, Pengfei & Guan, Hongzhi & Liu, Peng, 2020. "Modeling and solving the optimal allocation-pricing of public parking resources problem in urban-scale network," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 74-98.
    18. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    19. Xinliu Sui & Xiaofei Ye & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Microscopic Simulating the Impact of Cruising for Parking on Traffic Efficiency and Emission with Parking-and-Visit Test Data," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    20. Bahrami, Sina & Roorda, Matthew, 2022. "Autonomous vehicle parking policies: A case study of the City of Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 283-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:101:y:2017:i:c:p:123-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.