IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v133y2023icp198-208.html
   My bibliography  Save this article

Development of new railway timetabling rules for increased robustness

Author

Listed:
  • Solinen, Emma
  • Palmqvist, Carl-William

Abstract

Due to high demand and capacity consumption, railway timetables are often sensitive to disturbances. To maintain punctual operations, it is important that timetables are robust, and methods are needed that make them robust without consuming too much capacity. In this paper, we demonstrate how a policy change in the form of new timetable planning rules can be used to achieve more robust timetables. We present the use of the rules in a real-world case from 2019, when our rules were applied for the Swedish Southern mainline. In this paper, we describe how a new policy for scheduling trains can be applied, and we discuss implications observed when going from research to practice. We also describe how the proposed rules affect train paths and runtimes. The outcome of the rules is measured in a comprehensive evaluation of the traffic performance based on empirical operational data. The results from this study show that practical knowledge is necessary when developing a policy, as well as when developing a timetabling model. Insights, given to us by experienced timetable planners, can be used to enhance optimisation models and make the models more applicable in the real world. The main contribution of this paper is to show that it is possible to increase timetable robustness with a minor policy change based on previously presented research results. Even with relatively small timetable modifications, we can learn from the operational data that the new rules had the intended effect and that overall punctuality can be increased.

Suggested Citation

  • Solinen, Emma & Palmqvist, Carl-William, 2023. "Development of new railway timetabling rules for increased robustness," Transport Policy, Elsevier, vol. 133(C), pages 198-208.
  • Handle: RePEc:eee:trapol:v:133:y:2023:i:c:p:198-208
    DOI: 10.1016/j.tranpol.2023.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23000288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006. "Reliability and heterogeneity of railway services," European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
    2. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    3. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    4. Hong, Wei-Ting & Clifton, Geoffrey & Nelson, John D., 2022. "Rail transport system vulnerability analysis and policy implementation: Past progress and future directions," Transport Policy, Elsevier, vol. 128(C), pages 299-308.
    5. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    6. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dedík Milan & Gašparík Jozef & Bulková Zdenka & Kendra Martin & Šulko Peter, 2023. "Optimization of Timetables on the Prague – Bratislava / Vienna and Rail Transport Route in the Post-Pandemic Period," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 110-121, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    3. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    4. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    5. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
    6. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    7. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    8. Julius Pätzold, 2021. "Finding robust periodic timetables by integrating delay management," Public Transport, Springer, vol. 13(2), pages 349-374, June.
    9. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    10. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    11. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    13. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    14. Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Gábor Maróti, 2017. "A branch-and-bound approach for robust railway timetabling," Public Transport, Springer, vol. 9(1), pages 73-94, July.
    16. Hassini, Elkafi & Verma, Manish, 2016. "Disruption risk management in railroad networks: An optimization-based methodology and a case studyAuthor-Name: Azad, Nader," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 70-88.
    17. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    18. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    19. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    20. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:133:y:2023:i:c:p:198-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.