IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v184y2024ics1366554524000863.html
   My bibliography  Save this article

Gate appointment design in a container terminal: A robust optimization approach

Author

Listed:
  • Li, Shuqin
  • Jia, Shuai
  • Tao, Yi
  • Lin, Xudong

Abstract

Gate congestion is a main challenge faced by container terminals worldwide. In the scenario of gate congestion, the long waiting line of container trucks can block the traffic into the terminal, leading to disrupted terminal operations and unsatisfactory operating efficiency. In this paper, we study a gate appointment design problem that aims to manage the number of trucks allowed to a container terminal over time, so as to minimize the length of the truck waiting line and alleviate gate congestion. To optimize the gate appointment strategy, the truck service plans need also be devised, which involve the decisions for assigning trucks to yard blocks for container transhipment. We develop a two-stage robust optimization model for the problem by taking into account the uncertain service capacities of the yard blocks. Our model considers two decision stages, where the first-stage decision allocates slot capacities for the appointment slots, whereas the second-stage decision designs truck service plans with observed yard service capacity. We solve the two-stage robust model using an adapted column-and-row generation algorithm. In each iteration of the adapted column-and-row generation algorithm, the second-stage decision is generated by means of a pseudo-polynomial-time dynamic programming algorithm, while the first-stage decision is generated by a tailored scenario decomposition method. We test the computational performance of the proposed solution method on instances generated from real terminal operation data, and reveal managerial insights that would inspire terminal operators in the management of truck appointment for gate congestion mitigation.

Suggested Citation

  • Li, Shuqin & Jia, Shuai & Tao, Yi & Lin, Xudong, 2024. "Gate appointment design in a container terminal: A robust optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:transe:v:184:y:2024:i:c:s1366554524000863
    DOI: 10.1016/j.tre.2024.103495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524000863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Na Li & Hercules Haralambides & Haotian Sheng & Zhihong Jin, 2022. "A new vocation queuing model to optimize truck appointments and yard handling-equipment use in dual transactions systems of container terminals," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04046268, HAL.
    3. Chung‐Yee Lee & Shengnan Shu & Zhou Xu, 2021. "Optimal Global Liner Service Procurement by Utilizing Liner Service Schedules," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 703-714, March.
    4. Phan, Mai-Ha & Kim, Kap Hwan, 2016. "Collaborative truck scheduling and appointments for trucking companies and container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 37-50.
    5. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    6. Changqian Guan & Rongfang (Rachel) Liu, 2009. "Container terminal gate appointment system optimization," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 11(4), pages 378-398, December.
    7. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    8. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    9. Chen, Gang & Govindan, Kannan & Golias, Mihalis M., 2013. "Reducing truck emissions at container terminals in a low carbon economy: Proposal of a queueing-based bi-objective model for optimizing truck arrival pattern," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 3-22.
    10. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    11. Jin, Jian Gang & Lee, Der-Horng & Hu, Hao, 2015. "Tactical berth and yard template design at container transshipment terminals: A column generation based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 168-184.
    12. Na Li & Hercules Haralambides & Haotian Sheng & Zhihong Jin, 2022. "A new vocation queuing model to optimize truck appointments and yard handling-equipment use in dual transactions systems of container terminals," Post-Print hal-04046268, HAL.
    13. Zhen, Lu, 2014. "Container yard template planning under uncertain maritime market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 199-217.
    14. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.
    15. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    16. Yun Fong Lim & Chen Wang, 2017. "Inventory Management Based on Target-Oriented Robust Optimization," Management Science, INFORMS, vol. 63(12), pages 4409-4427, December.
    17. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    18. Sharif, Omor & Huynh, Nathan & Vidal, Jose M., 2011. "Application of El Farol model for managing marine terminal gate congestion," Research in Transportation Economics, Elsevier, vol. 32(1), pages 81-89.
    19. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    20. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    21. Jian Gang Jin & Der-Horng Lee & Jin Xin Cao, 2016. "Storage Yard Management in Maritime Container Terminals," Transportation Science, INFORMS, vol. 50(4), pages 1300-1313, November.
    22. Chen, Xiaoming & Zhou, Xuesong & List, George F., 2011. "Using time-varying tolls to optimize truck arrivals at ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 965-982.
    23. Tao, Yi & Lee, Chung-Yee, 2015. "Joint planning of berth and yard allocation in transshipment terminals using multi-cluster stacking strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 34-50.
    24. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Shuai & Li, Chung-Lun & Meng, Qiang, 2024. "The dry dock scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    2. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    3. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    4. Li, Dongjun & Dong, Jing-Xin & Song, Dong-Ping & Hicks, Christian & Singh, Surya Prakash, 2020. "Optimal contract design for the exchange of tradable truck permits at multiterminal ports," International Journal of Production Economics, Elsevier, vol. 230(C).
    5. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Xiaoju Zhang & Qingcheng Zeng & Zhongzhen Yang, 2019. "Optimization of truck appointments in container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 125-145, March.
    7. Torkjazi, Mohammad & Huynh, Nathan & Shiri, Samaneh, 2018. "Truck appointment systems considering impact to drayage truck tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 208-228.
    8. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.
    9. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    10. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    11. Phan, Mai-Ha & Kim, Kap Hwan, 2015. "Negotiating truck arrival times among trucking companies and a container terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 132-144.
    12. Yang, Lingyi & Ng, Tsan Sheng & Lee, Loo Hay, 2022. "A robust approximation for yard template optimization under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 21-53.
    13. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    14. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    15. Caballini, Claudia & Gracia, Maria D. & Mar-Ortiz, Julio & Sacone, Simona, 2020. "A combined data mining – optimization approach to manage trucks operations in container terminals with the use of a TAS: Application to an Italian and a Mexican port," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Zhou, Chenhao & Wang, Wencheng & Li, Haobin, 2020. "Container reshuffling considered space allocation problem in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    17. Mengzhi Ma & Houming Fan & Xiaodan Jiang & Zhenfeng Guo, 2019. "Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    18. Zhang, Di & Chen, Feng & Mei, Ziqiao, 2023. "Optimization on joint scheduling of yard allocation and transfer manpower assignment for automobile RO-RO terminal," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    19. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    20. Talley, Wayne K. & Ng, ManWo, 2016. "Port multi-service congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 66-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:184:y:2024:i:c:s1366554524000863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.