IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v163y2022ics1366554522001351.html
   My bibliography  Save this article

The effect of task complexity on stated choice processes: The moderating role of cognitive ability

Author

Listed:
  • Jang, Sunghoon
  • Rasouli, Soora
  • Timmermans, Harry

Abstract

There is ample evidence that individuals’ evaluation and choice of transportation-related alternatives in stated choice experiments vary by task complexity. Previous research has analyzed experimental error primarily as a function of the number of choice alternatives, the number of attribute (levels) and response time. It has ignored the fact that the cognitive ability of individuals may be another important moderating variable. Another limitation of previous research is that experimental error has been studied exclusively for utility-maximizing models, not for the more recently introduced regret-rejoice models. To augment this body of research, this study therefore proposes two advanced flexible reference-dependence models, based on the concepts of regret and rejoice, and argues that information processing depends on task complexity, which is affected not only by information load and response time but also by subjects’ cognitive ability. We apply an integrated approach examining both varying the variance of error term and simplifying task complexity by considering only partial information. Furthermore, we explore how the effect of information load differs between long-term and short-term decision problems. To that end, two stated choice experiments with varying information load are designed, one related to a short-term decision context (route choice) and one about a long-term decision context (residential choice). Cognitive ability is explicitly measured using a validated psychological test. Results show subjects’ inclination to consider full information in arriving at a choice increases with increasing cognitive ability. Response time and age appeared to be other significant determinants for the magnitude of error variance of choices. The proposed models outperform the conventional utility model and conventional regret- rejoice models and result in less error in the prediction of market share. The improvement in the prediction performance is more pronounced for more complex choice tasks.

Suggested Citation

  • Jang, Sunghoon & Rasouli, Soora & Timmermans, Harry, 2022. "The effect of task complexity on stated choice processes: The moderating role of cognitive ability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001351
    DOI: 10.1016/j.tre.2022.102744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522001351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swait, Joffre & Adamowicz, Wiktor, 2001. "The Influence of Task Complexity on Consumer Choice: A Latent Class Model of Decision Strategy Switching," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 28(1), pages 135-148, June.
    2. Dellaert, Benedict G.C. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "Shopping context and consumers’ mental representation of complex shopping trip decision problems," Journal of Retailing, Elsevier, vol. 84(2), pages 219-232.
    3. Chorus, Caspar G. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "A Random Regret-Minimization model of travel choice," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 1-18, January.
    4. David I. Laibson & Xavier Gabaix, 2000. "A Boundedly Rational Decision Algorithm," American Economic Review, American Economic Association, vol. 90(2), pages 433-438, May.
    5. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    6. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Consistently inconsistent: The role of certainty, acceptability and scale in choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 81-93.
    7. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 218-248.
    8. David Cesarini & Magnus Johannesson & Patrik K. E. Magnusson & Björn Wallace, 2012. "The Behavioral Genetics of Behavioral Anomalies," Management Science, INFORMS, vol. 58(1), pages 21-34, January.
    9. de Palma, Andre & Myers, Gordon M & Papageorgiou, Yorgos Y, 1994. "Rational Choice under an Imperfect Ability to Choose," American Economic Review, American Economic Association, vol. 84(3), pages 419-440, June.
    10. Arentze, Theo & Borgers, Aloys & Timmermans, Harry & DelMistro, Romano, 2003. "Transport stated choice responses: effects of task complexity, presentation format and literacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 229-244, May.
    11. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2017. "Integrating attribute non-attendance and value learning with risk attitudes and perceptual conditioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 172-191.
    12. Danny Campbell & Morten Raun Mørkbak & Søren Bøye Olsen, 2017. "Response time in online stated choice experiments: the non-triviality of identifying fast and slow respondents," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 6(1), pages 17-35, January.
    13. Chao Chen & Caspar Chorus & Eric Molin & Bert Wee, 2016. "Effects of task complexity and time pressure on activity-travel choices: heteroscedastic logit model and activity-travel simulator experiment," Transportation, Springer, vol. 43(3), pages 455-472, May.
    14. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
    15. Shane Frederick, 2005. "Cognitive Reflection and Decision Making," Journal of Economic Perspectives, American Economic Association, vol. 19(4), pages 25-42, Fall.
    16. John Rose & Iain Black, 2006. "Means matter, but variance matter too: Decomposing response latency influences on variance heterogeneity in stated preference experiments," Marketing Letters, Springer, vol. 17(4), pages 295-310, December.
    17. Hensher, David A. & Ho, Chinh, 2015. "The role of perceived acceptability of alternatives in identifying and assessing choice set processing strategies in stated choice settings: The case of road pricing reform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 225-237.
    18. Hensher, David A. & Rose, John M., 2009. "Simplifying choice through attribute preservation or non-attendance: Implications for willingness to pay," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 583-590, July.
    19. Zhu, Wei & Timmermans, Harry, 2010. "Modeling simplifying information processing strategies in conjoint experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 764-780, July.
    20. Puckett, Sean M. & Hensher, David A., 2008. "The role of attribute processing strategies in estimating the preferences of road freight stakeholders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 379-395, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haghani, Milad & Sarvi, Majid, 2018. "Hypothetical bias and decision-rule effect in modelling discrete directional choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 361-388.
    2. Mikołaj Czajkowski & Marek Giergiczny & William H. Greene, 2012. "Learning and Fatigue Effects Revisited. The Impact of Accounting for Unobservable Preference and Scale Heterogeneity on Perceived Ordering Effects in Multiple Choice Task Discrete Choice Experiments," Working Papers 2012-08, Faculty of Economic Sciences, University of Warsaw.
    3. Mohammed Alemu & Morten Mørkbak & Søren Olsen & Carsten Jensen, 2013. "Attending to the Reasons for Attribute Non-attendance in Choice Experiments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 333-359, March.
    4. Gonçalves, Tânia & Lourenço-Gomes, Lina & Pinto, Lígia M. Costa, 2022. "The role of attribute non-attendance on consumer decision-making: Theoretical insights and empirical evidence," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 788-805.
    5. Andrew Collins & John Rose & Stephane Hess, 2012. "Interactive stated choice surveys: a study of air travel behaviour," Transportation, Springer, vol. 39(1), pages 55-79, January.
    6. Yang, Jui-Chen & Johnson, F. Reed & Kilambi, Vikram & Mohamed, Ateesha F., 2015. "Sample size and utility-difference precision in discrete-choice experiments: A meta-simulation approach," Journal of choice modelling, Elsevier, vol. 16(C), pages 50-57.
    7. Dekker, Thijs & Hess, Stephane & Brouwer, Roy & Hofkes, Marjan, 2016. "Decision uncertainty in multi-attribute stated preference studies," Resource and Energy Economics, Elsevier, vol. 43(C), pages 57-73.
    8. Habib, Khandker Nurul, 2017. "Improving choice model parameter estimates by jointly modelling the SP choices with corresponding elicited certainty ratings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 305-319.
    9. Fifer, Simon & Rose, John M., 2016. "Can you ever be certain? Reducing hypothetical bias in stated choice experiments via respondent reported choice certaintyAuthor-Name: Beck, Matthew J," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 149-167.
    10. Moser, Riccarda & Raffaelli, Roberta, 2014. "Does attribute cut-off elicitation affect choice consistency? Contrasting hypothetical and real-money choice experiments," Journal of choice modelling, Elsevier, vol. 11(C), pages 16-29.
    11. Luis Márquez & Víctor Cantillo & Julián Arellana, 2020. "Assessing the influence of indicators’ complexity on hybrid discrete choice model estimates," Transportation, Springer, vol. 47(1), pages 373-396, February.
    12. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part II. Conceptualisation of external validity, sources and explanations of bias and effectiveness of mitigation methods," Journal of choice modelling, Elsevier, vol. 41(C).
    13. Kravchenko, Alex, 2014. "Influence of rudimentary attribute non-attendance (ANA) on choice experiment parameter estimates and design efficiency: A Monte Carlo Simulation analysis," Journal of choice modelling, Elsevier, vol. 11(C), pages 57-68.
    14. Boxebeld, Sander, 2024. "Ordering effects in discrete choice experiments: A systematic literature review across domains," Journal of choice modelling, Elsevier, vol. 51(C).
    15. Shr, Yau-Huo (Jimmy) & Zhang, Wendong, 2024. "Omitted downstream attributes and the benefits of nutrient reductions: Implications for choice experiments," Ecological Economics, Elsevier, vol. 222(C).
    16. Fraser, Iain & Balcombe, Kelvin & Williams, Louis & McSorley, Eugene, 2021. "Preference stability in discrete choice experiments. Some evidence using eye-tracking," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    17. Elizabeth Kinter & Thomas Prior & Christopher Carswell & John Bridges, 2012. "A Comparison of Two Experimental Design Approaches in Applying Conjoint Analysis in Patient-Centered Outcomes Research," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 5(4), pages 279-294, December.
    18. Tobias Börger & Oliver Frör & Sören Weiß, 2017. "The relationship between perceived difficulty and randomness in discrete choice experiments: Investigating reasons for and consequences of difficulty," Discussion Papers in Environment and Development Economics 2017-03, University of St. Andrews, School of Geography and Sustainable Development.
    19. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878, September.
    20. Hess, Stephane & Hensher, David A., 2010. "Using conditioning on observed choices to retrieve individual-specific attribute processing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 781-790, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.