IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v133y2020ics1366554519302406.html
   My bibliography  Save this article

Optimal supply chain resilience with consideration of failure propagation and repair logistics

Author

Listed:
  • Goldbeck, Nils
  • Angeloudis, Panagiotis
  • Ochieng, Washington

Abstract

The joint optimisation of investments in capacity and repair capability of production and logistics systems at risk of being damaged is an important aspect of supply chain resilience that is not sufficiently addressed by state-of-the-art modelling approaches. Furthermore, logistical issues of procuring repair resources impact speed of recovery but are not considered in most existing models. This paper presents a novel multi-stage stochastic programming model that optimizes pre-disruption investment decisions, as well as post-disruption dynamic adjustment of supply chain operations and allocation of repair resources. A case study demonstrates how the method can quantify the effects of pooling repair resources.

Suggested Citation

  • Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:transe:v:133:y:2020:i:c:s1366554519302406
    DOI: 10.1016/j.tre.2019.101830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519302406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.101830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    2. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    3. Lam, Jasmine Siu Lee & Bai, Xiwen, 2016. "A quality function deployment approach to improve maritime supply chain resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 92(C), pages 16-27.
    4. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    5. Sean P. Willems, 2008. "Data Set--Real-World Multiechelon Supply Chains Used for Inventory Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 19-23, February.
    6. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    7. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    8. Silke Friedrich, 2013. "Energy Efficiency in Buildings in EU Countries," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(2), pages 57-59, 07.
    9. Chen, Li-Ming & Liu, Yan Emma & Yang, Shu-Jung Sunny, 2015. "Robust supply chain strategies for recovering from unanticipated disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 198-214.
    10. Oecd, 2013. "Building Blocks for Smart Networks," OECD Digital Economy Papers 215, OECD Publishing.
    11. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    12. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    13. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    14. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2017. "Responsive contingency planning of capacitated supply networks under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 13-37.
    15. Salehi Sadghiani, N. & Torabi, S.A. & Sahebjamnia, N., 2015. "Retail supply chain network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 95-114.
    16. Kök, A. Gürhan & Shang, Kevin H., 2014. "Evaluation of cycle-count policies for supply chains with inventory inaccuracy and implications on RFID investments," European Journal of Operational Research, Elsevier, vol. 237(1), pages 91-105.
    17. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    18. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    19. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    20. Hou, Yunzhang & Wang, Xiaoling & Wu, Yenchun Jim & He, Peixu, 2018. "How does the trust affect the topology of supply chain network and its resilience? An agent-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 229-241.
    21. Salal Humair & John D. Ruark & Brian Tomlin & Sean P. Willems, 2013. "Incorporating Stochastic Lead Times Into the Guaranteed Service Model of Safety Stock Optimization," Interfaces, INFORMS, vol. 43(5), pages 421-434, October.
    22. Fang Liu & Jing-Sheng Song & Jordan D. Tong, 2016. "Building Supply Chain Resilience through Virtual Stockpile Pooling," Production and Operations Management, Production and Operations Management Society, vol. 25(10), pages 1745-1762, October.
    23. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    24. Matsuo, Hirofumi, 2015. "Implications of the Tohoku earthquake for Toyota׳s coordination mechanism: Supply chain disruption of automotive semiconductors," International Journal of Production Economics, Elsevier, vol. 161(C), pages 217-227.
    25. Helfgott, Ariella, 2018. "Operationalising systemic resilience," European Journal of Operational Research, Elsevier, vol. 268(3), pages 852-864.
    26. Gillen, David & Hasheminia, Hamed, 2016. "Measuring reliability of transportation networks using snapshots of movements in the network – An analytical and empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 808-824.
    27. repec:ces:ifodic:v:11:y:2013:i:2:p:19094737 is not listed on IDEAS
    28. Masih-Tehrani, Behdad & Xu, Susan H. & Kumara, Soundar & Li, Haijun, 2011. "A single-period analysis of a two-echelon inventory system with dependent supply uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1128-1151, September.
    29. ., 2013. "The evolution of mutual building societies," Chapters, in: Finance in an Age of Austerity, chapter 4, pages 64-87, Edward Elgar Publishing.
    30. Pant, Raghav & Barker, Kash & Zobel, Christopher W., 2014. "Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 92-102.
    31. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
    32. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    33. Gregory D. Glockner & George L. Nemhauser, 2000. "A Dynamic Network Flow Problem with Uncertain arc Capacities: Formulation and Problem Structure," Operations Research, INFORMS, vol. 48(2), pages 233-242, April.
    34. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    35. Lu, Mengshi & Huang, Simin & Shen, Zuo-Jun Max, 2011. "Product substitution and dual sourcing under random supply failures," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1251-1265, September.
    36. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2015. "Uncertainty propagation in a supply chain or supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 185-206.
    37. Pant, Raghav & Barker, Kash & Grant, F. Hank & Landers, Thomas L., 2011. "Interdependent impacts of inoperability at multi-modal transportation container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 722-737, September.
    38. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    39. Zhalechian, M. & Torabi, S. Ali & Mohammadi, M., 2018. "Hub-and-spoke network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 20-43.
    40. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.
    41. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    42. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    43. Joost R. Santos & Yacov Y. Haimes, 2004. "Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1437-1451, December.
    44. Chen, Hong & Cullinane, Kevin & Liu, Nan, 2017. "Developing a model for measuring the resilience of a port-hinterland container transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 282-301.
    45. Benjamin R. Tukamuhabwa & Mark Stevenson & Jerry Busby & Marta Zorzini, 2015. "Supply chain resilience: definition, review and theoretical foundations for further study," International Journal of Production Research, Taylor & Francis Journals, vol. 53(18), pages 5592-5623, September.
    46. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yazdani, Morteza & Torkayesh, Ali Ebadi & Chatterjee, Prasenjit & Fallahpour, Alireza & Montero-Simo, Maria Jose & Araque-Padilla, Rafael A. & Wong, Kuan Yew, 2022. "A fuzzy group decision-making model to measure resiliency in a food supply chain: A case study in Spain," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Zhu, Xiaoyan & Cao, Yunzhi, 2021. "The optimal recovery-fund based strategy for uncertain supply chain disruptions: A risk-averse two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    4. Lin, Yizhong & Leung, Janny M.Y. & Zhang, Lianmin & Gu, Jia-Wen, 2020. "Single-item repairable inventory system with stochastic new and warranty demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. Li, Guo & Xue, Jing & Li, Na & Ivanov, Dmitry, 2022. "Blockchain-supported business model design, supply chain resilience, and firm performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    6. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    7. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    9. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    10. Chen, Daqiang & Sun, Danzhi & Yin, Yunqiang & Dhamotharan, Lalitha & Kumar, Ajay & Guo, Yihan, 2022. "The resilience of logistics network against node failures," International Journal of Production Economics, Elsevier, vol. 244(C).
    11. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    12. Mohammed Alkahtani, 2022. "Supply Chain Management Optimization and Prediction Model Based on Projected Stochastic Gradient," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    13. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    14. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    15. Chen, Li-Ming & Chang, Wei-Lun, 2021. "Supply- and cyber-related disruptions in cloud supply chain firms: Determining the best recovery speeds," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    16. Cao, Yunzhi & Zhu, Xiaoyan & Yan, Houmin, 2022. "Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    17. Fu, Xiuwen & Xu, Xiaojie & Li, Wenfeng, 2024. "Cascading failure resilience analysis and recovery of automotive manufacturing supply chain networks considering enterprise roles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    18. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    2. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    5. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    6. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    7. Chih-Hung Hsu & Ming-Ge Li & Ting-Yi Zhang & An-Yuan Chang & Shu-Zhen Shangguan & Wan-Ling Liu, 2022. "Deploying Big Data Enablers to Strengthen Supply Chain Resilience to Mitigate Sustainable Risks Based on Integrated HOQ-MCDM Framework," Mathematics, MDPI, vol. 10(8), pages 1-35, April.
    8. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    9. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    10. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    11. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    12. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    13. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    14. Alikhani, Reza & Torabi, S.Ali & Altay, Nezih, 2021. "Retail supply chain network design with concurrent resilience capabilities," International Journal of Production Economics, Elsevier, vol. 234(C).
    15. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    16. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    17. Ata Allah Taleizadeh & Ali Ghavamifar & Amir Khosrojerdi, 2022. "Resilient network design of two supply chains under price competition: game theoretic and decomposition algorithm approach," Operational Research, Springer, vol. 22(1), pages 825-857, March.
    18. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    19. Gital, Yeşim & Bilgen, Bilge, 2024. "Resilient strategies for managing supply and facility disruptions in a biomass supply chain," Applied Energy, Elsevier, vol. 372(C).
    20. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:133:y:2020:i:c:s1366554519302406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.