IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011917.html
   My bibliography  Save this article

Resilient strategies for managing supply and facility disruptions in a biomass supply chain

Author

Listed:
  • Gital, Yeşim
  • Bilgen, Bilge

Abstract

Environmental concerns and the need for renewable resources in energy production increase the interest of researchers in the subject of the biomass supply chain. The widespread use of biomass requires the need for design and optimization of the biomass supply chain network for real-life conditions. The complex and large-scale nature of the biomass supply chain leads to the existence of uncertainties that introduce several disruptions. Ignoring disruptions in the decision-making process makes the network design sensitive and vulnerable. The concept of resilient network design gives the biomass supply chain the ability to quickly adapt under changing conditions and maintain flow in cases of disruption. This study aims to develop a resilient biogas supply chain network design considering disruptive risks. A scenario-based mixed-integer linear programming model is developed under disruptions. Against both supply disruptions and facility disruptions, three resilience strategies are implemented: (1) multi-sourcing, (2) coverage distance, and (3) backup assignment strategy. To analyze and validate the effects of each proposed resilience strategy, comparative analyses are conducted considering several cases with different assumptions. For comparative analyses, the developed scenario-based optimization model is applied in the form of different model adjustments that incorporate the proposed resilience strategies. The applicability of the proposed resilience strategies is validated by analyzing their impact on the network structure, efficiency, production outputs, and economic performance of the supply chain. The impact of resilience strategies is reported and analyzed to make better inferences and contribute to managerial insights. Comparative results highlight that resilience strategies lead to improvement in different performance measures of the supply chain.

Suggested Citation

  • Gital, Yeşim & Bilgen, Bilge, 2024. "Resilient strategies for managing supply and facility disruptions in a biomass supply chain," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011917
    DOI: 10.1016/j.apenergy.2024.123808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun Bai & Xiaopeng Li & Fan Peng & Xin Wang & Yanfeng Ouyang, 2015. "Effects of Disruption Risks on Biorefinery Location Design," Energies, MDPI, vol. 8(2), pages 1-19, February.
    2. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    3. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    4. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    5. Tobias Bier & Anne Lange & Christoph H. Glock, 2020. "Methods for mitigating disruptions in complex supply chain structures: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 58(6), pages 1835-1856, March.
    6. Fangzhou Sun & Maichel M. Aguayo & Rahul Ramachandran & Subhash C. Sarin, 2018. "Biomass feedstock supply chain design – a taxonomic review and a decomposition-based methodology," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5626-5659, September.
    7. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Balaman, Şebnem Yılmaz & Selim, Hasan, 2014. "A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, Elsevier, vol. 130(C), pages 289-304.
    9. Dmitry Ivanov & Alexandre Dolgui, 2019. "Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 5119-5136, August.
    10. Yılmaz Balaman, Şebnem & Selim, Hasan, 2014. "A fuzzy multiobjective linear programming model for design and management of anaerobic digestion based bioenergy supply chains," Energy, Elsevier, vol. 74(C), pages 928-940.
    11. Zhalechian, M. & Torabi, S. Ali & Mohammadi, M., 2018. "Hub-and-spoke network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 20-43.
    12. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    13. Alexandre Dolgui, 2018. "Leading scholars in Production Research for the 55th volume anniversary of IJPR," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 1-9, January.
    14. George Baryannis & Sahar Validi & Samir Dani & Grigoris Antoniou, 2019. "Supply chain risk management and artificial intelligence: state of the art and future research directions," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2179-2202, April.
    15. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    16. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    17. Md Abu Helal & Nathaniel Anderson & Yu Wei & Matthew Thompson, 2023. "A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization," Energies, MDPI, vol. 16(3), pages 1-32, January.
    18. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    19. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    20. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    21. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    22. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    23. Goh, Mark & Lim, Joseph Y.S. & Meng, Fanwen, 2007. "A stochastic model for risk management in global supply chain networks," European Journal of Operational Research, Elsevier, vol. 182(1), pages 164-173, October.
    24. Yazdanparast, R. & Jolai, F. & Pishvaee, M.S. & Keramati, A., 2022. "A resilient drop-in biofuel supply chain integrated with existing petroleum infrastructure: Toward more sustainable transport fuel solutions," Renewable Energy, Elsevier, vol. 184(C), pages 799-819.
    25. Khishtandar, Soheila, 2019. "Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design," Applied Energy, Elsevier, vol. 236(C), pages 183-195.
    26. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    27. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    28. Dmitry Ivanov, 2018. "Structural Dynamics and Resilience in Supply Chain Risk Management," International Series in Operations Research and Management Science, Springer, number 978-3-319-69305-7, July-Dece.
    29. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    30. Rajabzadeh, Hamed & Babazadeh, Reza, 2022. "A game-theoretic approach for power pricing in a resilient supply chain considering a dual channel biorefining structure and the hybrid power plant," Renewable Energy, Elsevier, vol. 198(C), pages 1082-1094.
    31. Behzadi, Golnar & O'Sullivan, Michael Justin & Olsen, Tava Lennon & Scrimgeour, Frank & Zhang, Abraham, 2017. "Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain," International Journal of Production Economics, Elsevier, vol. 191(C), pages 207-220.
    32. Armin Jabbarzadeh & Behnam Fahimnia & Fatemeh Sabouhi, 2018. "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5945-5968, September.
    33. Jafar Namdar & Xueping Li & Rupy Sawhney & Ninad Pradhan, 2018. "Supply chain resilience for single and multiple sourcing in the presence of disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(6), pages 2339-2360, March.
    34. Nasim Zandi Atashbar & Nacima Labadie & Christian Prins, 2018. "Modelling and optimisation of biomass supply chains: a review," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3482-3506, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    4. Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).
    5. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    6. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    7. Shraddha Mishra & Surya Prakash Singh, 2022. "A stochastic disaster-resilient and sustainable reverse logistics model in big data environment," Annals of Operations Research, Springer, vol. 319(1), pages 853-884, December.
    8. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    9. Muhammad Junaid & Ye Xue & Muzzammil Wasim Syed & Ji Zu Li & Muhammad Ziaullah, 2019. "A Neutrosophic AHP and TOPSIS Framework for Supply Chain Risk Assessment in Automotive Industry of Pakistan," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    10. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    11. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    12. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    14. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    15. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    17. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    18. El-Awady Attia & Ali Alarjani & Md. Sharif Uddin & Ahmed Farouk Kineber, 2023. "Determining the Stationary Enablers of Resilient and Sustainable Supply Chains," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    19. Lydia Novoszel & Tina Wakolbinger, 2022. "Meta-analysis of Supply Chain Disruption Research," SN Operations Research Forum, Springer, vol. 3(1), pages 1-25, March.
    20. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.