IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v78y2015icp169-181.html
   My bibliography  Save this article

Applying variational theory to travel time estimation on urban arterials

Author

Listed:
  • Hans, Etienne
  • Chiabaut, Nicolas
  • Leclercq, Ludovic

Abstract

The Variational Theory (VT) expresses the LWR model as a least cost path problem. Recent researches have shown that this problem can be simply applied on a graph with a minimal number of nodes and edges when the fundamental diagram is triangular (sufficient variational graph – SVG). Such a graph accounts for traffic signal settings on an urban arterial and leads to mean traffic states for the total arterial in free-flow or congested stationary conditions. The Macroscopic Fundamental Diagram (MFD) can then be directly estimated. In this paper, we extend this method to provide the complete distribution of deterministic travel times observed on an arterial. First, we will show how to obtain a tight estimation of the arterial capacity by properly identifying the most constraining part of the SVG. Then, we will show that a modified version of the SVG allows the exact calculation of the cumulative count curves at the entry and exit of an arterial. It is finally possible to derive the full travel time distributions for any dynamic conditions.

Suggested Citation

  • Hans, Etienne & Chiabaut, Nicolas & Leclercq, Ludovic, 2015. "Applying variational theory to travel time estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 169-181.
  • Handle: RePEc:eee:transb:v:78:y:2015:i:c:p:169-181
    DOI: 10.1016/j.trb.2015.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151500079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    2. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    3. Wu, Xinkai & Liu, Henry X., 2011. "A shockwave profile model for traffic flow on congested urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1768-1786.
    4. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    5. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    6. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    7. Yasuji Makigami & G. F. Newell & Richard Rothery, 1971. "Three-Dimensional Representation of Traffic Flow," Transportation Science, INFORMS, vol. 5(3), pages 302-313, August.
    8. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    9. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    10. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    11. Papageorgiou, Markos, 1998. "Some remarks on macroscopic traffic flow modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 323-329, September.
    12. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: Solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 934-950, December.
    13. Viti, Francesco & van Zuylen, Henk J., 2010. "Probabilistic models for queues at fixed control signals," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 120-135, January.
    14. Daganzo, Carlos F., 2005. "A variational formulation of kinematic waves: basic theory and complex boundary conditions," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 187-196, February.
    15. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    16. Geroliminis, Nikolas & Boyacı, Burak, 2012. "The effect of variability of urban systems characteristics in the network capacity," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1607-1623.
    17. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    18. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    2. Hu, Zejing & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2021. "Estimation of travel time through a composite ring road by a viscoelastic traffic flow model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 501-521.
    3. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    4. Zhang, Lele & Finn, Caley & Garoni, Timothy M. & de Gier, Jan, 2018. "Behaviour of traffic on a link with traffic light boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 116-138.
    5. Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wada, Kentaro & Usui, Kento & Takigawa, Tsubasa & Kuwahara, Masao, 2018. "An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 907-925.
    2. Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
    3. Laval, Jorge A. & Costeseque, Guillaume & Chilukuri, Bargavarama, 2016. "The impact of source terms in the variational representation of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 204-216.
    4. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    5. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    6. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    7. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    8. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.
    9. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    10. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    11. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    12. Laval, Jorge A. & Leclercq, Ludovic, 2013. "The Hamilton–Jacobi partial differential equation and the three representations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 17-30.
    13. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    14. Li, Jia & Zhang, H.M., 2013. "The variational formulation of a non-equilibrium traffic flow model: Theory and implications," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 314-325.
    15. Simoni, Michele D. & Claudel, Christian G., 2017. "A fast simulation algorithm for multiple moving bottlenecks and applications in urban freight traffic management," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 238-255.
    16. Zhang, Lele & Finn, Caley & Garoni, Timothy M. & de Gier, Jan, 2018. "Behaviour of traffic on a link with traffic light boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 116-138.
    17. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    18. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    20. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:78:y:2015:i:c:p:169-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.