IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v88y2016icp72-92.html
   My bibliography  Save this article

Biased standard error estimations in transport model calibration due to heteroscedasticity arising from the variability of linear data projection

Author

Listed:
  • Wong, Wai
  • Wong, S.C.

Abstract

Reliable transport models calibrated from accurate traffic data are crucial for predicating transportation system performance and ensuring better traffic planning. However, due to the impracticability of collecting data from an entire population, methods of data inference such as the linear data projection are commonly adopted. A recent study has shown that systematic bias may be embedded in the parameters calibrated due to linearly projected data that do not account for scaling factor variability. Adjustment factors for reducing such biases in the calibrated parameters have been proposed for a generalized multivariate polynomial model. However, the effects of linear data projection on the dispersion of and confidence in the adjusted parameters have not been explored. Without appropriate statistics examining the statistical significance of the adjusted model, their validity in applications remains unknown and dubious. This study reveals that heteroscedasticity is inherently introduced by data projection with a varying scaling factor. Parameter standard errors that are estimated by linearly projected data without any appropriate treatments for non-homoscedasticity are definitely biased, and possibly above or below their true values. To ensure valid statistical tests of significance and prevent exposure to uninformed and unnecessary risk in applications, a generic analytical distribution-free (ADF) method and an equivalent scaling factor (ESF) method are proposed to adjust the parameter standard errors for a generalized multivariate polynomial model, based on the reported residual sum of squares. The ESF method transforms a transport model into a linear function of the scaling factor before calibration, which provides an alternative solution path for achieving unbiased parameter estimations. Simulation results demonstrate the robustness of the ESF method compared with the ADF method at high model nonlinearity. Case studies are conducted to illustrate the applicability of the ESF method for the parameter standard error estimations of six Macroscopic Bureau of Public Road functions, which are calibrated using real-world global positioning system data obtained from Hong Kong.

Suggested Citation

  • Wong, Wai & Wong, S.C., 2016. "Biased standard error estimations in transport model calibration due to heteroscedasticity arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 72-92.
  • Handle: RePEc:eee:transb:v:88:y:2016:i:c:p:72-92
    DOI: 10.1016/j.trb.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
    2. Hai Yang & S. C. Wong, 2000. "A Continuous Equilibrium Model for Estimating Market Areas of Competitive Facilities with Elastic Demand and Market Externality," Transportation Science, INFORMS, vol. 34(2), pages 216-227, May.
    3. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    4. Wong, S. C., 1998. "Multi-commodity traffic assignment by continuum approximation of network flow with variable demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 567-581, November.
    5. John, Wright & Dahlgren, Joy, 2001. "Using Vehicles Equipped with Toll Tags as Probes for Providing Travel Times," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9f17h2j0, Institute of Transportation Studies, UC Berkeley.
    6. Moore, II, James E. & Cho, Seongkil & Basu, Arup & Mezger, Daniel B., 2001. "Use of Los Angeles Freeway Service Patrol Vehicles as Probe Vehicles," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8qf8430v, Institute of Transportation Studies, UC Berkeley.
    7. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
    2. Wai Wong & S. C. Wong, 2019. "Unbiased Estimation Methods of Nonlinear Transport Models Based on Linearly Projected Data," Transportation Science, INFORMS, vol. 53(3), pages 665-682, May.
    3. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    4. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    5. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.
    6. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    7. Karakaya, Emrah, 2016. "Finite Element Method for forecasting the diffusion of photovoltaic systems: Why and how?," Applied Energy, Elsevier, vol. 163(C), pages 464-475.
    8. Jiang, Yanqun & Wong, S.C. & Ho, H.W. & Zhang, Peng & Liu, Ruxun & Sumalee, Agachai, 2011. "A dynamic traffic assignment model for a continuum transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 343-363, February.
    9. Herrera, Juan C. & Work, Daniel B. & Herring, Ryan & Ban, Xuegang Jeff & Bayen, Alexandre M, 2009. "Evaluation of Traffic Data Obtained via GPS-Enabled Mobile Phones: the Mobile Century Field Experiment," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0sd42014, Institute of Transportation Studies, UC Berkeley.
    10. Ho, H.W. & Wong, S.C. & Yang, Hai & Loo, Becky P.Y., 2005. "Cordon-based congestion pricing in a continuum traffic equilibrium system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 813-834.
    11. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
    12. Yan-Qun Jiang & S.C. Wong & Peng Zhang & Keechoo Choi, 2017. "Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City," Transportation Science, INFORMS, vol. 51(3), pages 931-945, August.
    13. Karakaya, Emrah, 2014. "Finite Element Model of the Innovation Diffusion: An Application to Photovoltaic Systems," INDEK Working Paper Series 2014/6, Royal Institute of Technology, Department of Industrial Economics and Management.
    14. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    15. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    16. Russo, Antonio & Adler, Martin W. & Liberini, Federica & van Ommeren, Jos N., 2021. "Welfare losses of road congestion: Evidence from Rome," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    17. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    18. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    19. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    20. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:88:y:2016:i:c:p:72-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.