IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v108y2018icp127-147.html
   My bibliography  Save this article

Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks

Author

Listed:
  • Prakash, A. Arun

Abstract

This study addresses the problem of determining the path with the least expected travel time on stochastic and time-dependent networks. The Bellman’s optimality principle is not applicable to this problem —because of its non-linear objective function— making it difficult to solve. In this light, we propose a pruning-based algorithm that progressively determines subpaths from the source and eliminates those that are non-optimal. The algorithm uses a novel bi-level, bounds-based pruning criterion to determine whether subpath can belong to the optimal path. We show that the pruning criterion is valid and that the algorithm terminates with an exact solution. Computational experiments demonstrate that the algorithm can successfully solve the problem even on large real-world networks and that its practical computational complexity is polynomial. Finally, we show that the pruning algorithm outperforms the existing non-dominance based procedure by a factor proportional to the network size on medium-sized networks and more so on large-sized networks. This work has the potential to aid in a wider application of stochastic time-dependent networks for modeling and analysis.

Suggested Citation

  • Prakash, A. Arun, 2018. "Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 127-147.
  • Handle: RePEc:eee:transb:v:108:y:2018:i:c:p:127-147
    DOI: 10.1016/j.trb.2017.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517305143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    2. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    3. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    4. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    5. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    6. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    7. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    8. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    9. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    10. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    11. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    12. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    13. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    14. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shichao Sun & Zhengyu Duan & Qi Xu, 2018. "School bus routing problem in the stochastic and time-dependent transportation network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    2. Matthias Ruß & Gunther Gust & Dirk Neumann, 2021. "The Constrained Reliable Shortest Path Problem in Stochastic Time-Dependent Networks," Operations Research, INFORMS, vol. 69(3), pages 709-726, May.
    3. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
    4. Zhang, Dongqing & Wallace, Stein W. & Guo, Zhaoxia & Dong, Yucheng & Kaut, Michal, 2021. "On scenario construction for stochastic shortest path problems in real road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Prakash, A. Arun & Seshadri, Ravi & Srinivasan, Karthik K., 2018. "A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: Formulation and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 171-198.
    6. Dongqing Zhang & Zhaoxia Guo, 2019. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    7. Elías Escobar-Gómez & J.L. Camas-Anzueto & Sabino Velázquez-Trujillo & Héctor Hernández-de-León & Rubén Grajales-Coutiño & Eduardo Chandomí-Castellanos & Héctor Guerra-Crespo, 2019. "A Linear Programming Model with Fuzzy Arc for Route Optimization in the Urban Road Network," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    8. Daniela Ambrosino & Carmine Cerrone, 2022. "The Cost-Balanced Path Problem: A Mathematical Formulation and Complexity Analysis," Mathematics, MDPI, vol. 10(5), pages 1-13, March.
    9. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    2. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    3. Arun Prakash, A., 2020. "Algorithms for most reliable routes on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 202-220.
    4. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
    5. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.
    6. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    7. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
    8. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
    9. Zhang, Dongqing & Wallace, Stein W. & Guo, Zhaoxia & Dong, Yucheng & Kaut, Michal, 2021. "On scenario construction for stochastic shortest path problems in real road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    11. Manseur, Farida & Farhi, Nadir & Nguyen Van Phu, Cyril & Haj-Salem, Habib & Lebacque, Jean-Patrick, 2020. "Robust routing, its price, and the tradeoff between routing robustness and travel time reliability in road networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 159-171.
    12. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    13. Dongqing Zhang & Zhaoxia Guo, 2019. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    14. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    15. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.
    16. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    17. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    18. Zweers, Bernard G. & van der Mei, Rob D., 2022. "Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 178-188.
    19. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    20. Shen, Liang & Shao, Hu & Wu, Ting & Fainman, Emily Zhu & Lam, William H.K., 2020. "Finding the reliable shortest path with correlated link travel times in signalized traffic networks under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:108:y:2018:i:c:p:127-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.