IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt6v40f0bs.html
   My bibliography  Save this paper

Traffic flow reconstruction using mobile sensors and loop detector data

Author

Listed:
  • Herrera, Juan C
  • Bayen, Alexandre M

Abstract

In order to develop efficient control strategies to improve traffic conditions on freeways, it is necessary to know the state of the freeway at any point in time and space. Using data collected from stationary detectors –such as loop detector stations– the density field can be currently reconstructed to a certain accuracy. Unfortunately, deploying this type of infrastructure is expensive, and its reliability varies. This article proposes and investigates new algorithms that make use of data provided by mobile sensors, in addition to that collected by stationary detectors, to reconstruct traffic flow. Two approaches are proposed and evaluated with traffic data. The first approach is based on data assimilation methods (so-called nudging method) and the second is based on Kalman filtering. These approaches are evaluated using traffic data. Results show that the proposed algorithms appropriately incorporate the new data, improving significantly the accuracy of the estimates that consider loop detector data only.

Suggested Citation

  • Herrera, Juan C & Bayen, Alexandre M, 2007. "Traffic flow reconstruction using mobile sensors and loop detector data," University of California Transportation Center, Working Papers qt6v40f0bs, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt6v40f0bs
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6v40f0bs.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ygnace, Jean-Luc & Drane, Chris & Yim, Y. B. & de Lacvivier, Renaud, 2000. "Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8xn8m01v, Institute of Transportation Studies, UC Berkeley.
    2. Sanwal, Kumud K. & Walrand, Jean, 1995. "Vehicles As Probes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3gh0890x, Institute of Transportation Studies, UC Berkeley.
    3. Denos C. Gazis & Charles H. Knapp, 1971. "On-Line Estimation of Traffic Densities from Time-Series of Flow and Speed Data," Transportation Science, INFORMS, vol. 5(3), pages 283-301, August.
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    5. Westerman, Marcel & Litjens, Remco & Linnartz, Jean-paul, 1996. "Integration Of Probe Vehicle And Induction Loop Data: Estimation Of Travel Times And Automatic Incident Detection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8mh629c3, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Wen-Long & Zhang, Mengxiao & Wu, Guoyuan & Yang, Lan & Fang, Shan & Ochieng, Washington, 2023. "Estimation of traffic energy consumption based on macro-micro modelling with sparse data from Connected and Automated Vehicles," Applied Energy, Elsevier, vol. 351(C).
    2. Xiaomeng Wang & Ling Peng & Tianhe Chi & Mengzhu Li & Xiaojing Yao & Jing Shao, 2015. "A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    2. Hiribarren, Gabriel & Herrera, Juan Carlos, 2014. "Real time traffic states estimation on arterials based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 19-30.
    3. Herrera, Juan C. & Work, Daniel B. & Herring, Ryan & Ban, Xuegang Jeff & Bayen, Alexandre M, 2009. "Evaluation of Traffic Data Obtained via GPS-Enabled Mobile Phones: the Mobile Century Field Experiment," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0sd42014, Institute of Transportation Studies, UC Berkeley.
    4. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    5. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    6. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    7. Coifman, Benjamin & Varaiya, Pravin, 2002. "Deployment and Evaluation of Real-Time Vehicle Reidentification from an Operations Perspective," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6tp5w2gt, Institute of Transportation Studies, UC Berkeley.
    8. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    9. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    10. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    11. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    12. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    14. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    15. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    17. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    18. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    19. Jin, Wen-Long, 2010. "Continuous kinematic wave models of merging traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1084-1103, September.
    20. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt6v40f0bs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.