IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v34y2000i5p419-449.html
   My bibliography  Save this article

Global maximum likelihood estimation procedure for multinomial probit (MNP) model parameters

Author

Listed:
  • Liu, Yu-Hsin
  • Mahmassani, Hani S.

Abstract

This paper presents a procedure, named GAMNP, incorporating genetic algorithms (GAs) and nonlinear programming (NLP) techniques to find the "global" maximum likelihood estimate (MLE) in multinomial probit (MNP) model estimation. The GAMNP estimation procedure uses GAs to search for "good" starting points systematically and globally through the possible solution areas that satisfy the property of positive definite variance-covariance matrix; the NLP algorithm is then used to fine-tune the solutions obtained from the GAs procedure. A numerical experiment was conducted to test the performance of the GAMNP estimation procedure based on an artificial data set with known parameter values, model specification, and error structure. The log-likelihood function value, parameter accuracy measures, and the CPU execution time were adopted as performance measures in this experiment. The experimental results indicated that the GAMNP estimation procedure is able to find the global MLE in MNP model estimation when the analyst does not have a priori expectations of the magnitudes of the parameters. The highlight, the importance of using systematic starting solution search procedures, like those used in genetic algorithms, instead of selecting starting solutions arbitrarily.

Suggested Citation

  • Liu, Yu-Hsin & Mahmassani, Hani S., 2000. "Global maximum likelihood estimation procedure for multinomial probit (MNP) model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 419-449, June.
  • Handle: RePEc:eee:transb:v:34:y:2000:i:5:p:419-449
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00033-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolduc, D., 1990. "Autoregressive Alternatives in the Multinomial Probit Model," Papers 9013, Laval - Recherche en Energie.
    2. Charles E. Clark, 1961. "The Greatest of a Finite Set of Random Variables," Operations Research, INFORMS, vol. 9(2), pages 145-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
    2. Batram, Manuel & Bauer, Dietmar, 2019. "On consistency of the MACML approach to discrete choice modelling," Journal of choice modelling, Elsevier, vol. 30(C), pages 1-16.
    3. Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
    4. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    5. Rong-Chang Jou & David A. Hensher & Yu-Hsin Liu & Ching-Shu Chiu, 2010. "Urban Commuters’ Mode-switching Behaviour in Taipai, with an Application of the Bounded Rationality Principle," Urban Studies, Urban Studies Journal Limited, vol. 47(3), pages 650-665, March.
    6. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    7. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    8. Sohn, Keemin & Kim, Daehyun, 2010. "Zonal centrality measures and the neighborhood effect," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 733-743, November.
    9. Jou, Rong-Chang & Lam, Soi-Hoi & Liu, Yu-Hsin & Chen, Ke-Hong, 2005. "Route switching behavior on freeways with the provision of different types of real-time traffic information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 445-461, June.
    10. Moonsoo Ko & Taewan Kim & Keemin Sohn, 2013. "Calibrating a social-force-based pedestrian walking model based on maximum likelihood estimation," Transportation, Springer, vol. 40(1), pages 91-107, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Train, "undated". "Simulation Methods for Probit and Related Models Based on Convenient Error Partitioning," Working Papers _009, University of California at Berkeley, Econometrics Laboratory Software Archive.
    2. Bolduc, Denis & Kaci, Mustapha, 1993. "Estimation des modèles probit polytomiques : un survol des techniques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 69(3), pages 161-191, septembre.
    3. Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
    4. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.
    5. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    6. Elmaghraby, Salah E., 2000. "On criticality and sensitivity in activity networks," European Journal of Operational Research, Elsevier, vol. 127(2), pages 220-238, December.
    7. Elmaghraby, S. E. & Fathi, Y. & Taner, M. R., 1999. "On the sensitivity of project variability to activity mean duration," International Journal of Production Economics, Elsevier, vol. 62(3), pages 219-232, September.
    8. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    9. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    10. Bhat, Chandra R., 2018. "New matrix-based methods for the analytic evaluation of the multivariate cumulative normal distribution function," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 238-256.
    11. D'Amato, Rebecca M. (Rebecca Marie) & D'Aquila, Richard T. & Wein, Lawrence M., 1998. "Management of antiretroviral therapy for HIV infection : analyzing when to change therapy," Working papers WP 4043-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Federica Bomboi & Christoph Buchheim & Jonas Pruente, 2022. "On the stochastic vehicle routing problem with time windows, correlated travel times, and time dependency," 4OR, Springer, vol. 20(2), pages 217-239, June.
    13. Borsch-Supan, Axel & Hajivassiliou, Vassilis A., 1993. "Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models," Journal of Econometrics, Elsevier, vol. 58(3), pages 347-368, August.
    14. Kingsley E. Haynes & Stewart Fotheringham, 1990. "The Impact of Space on the Application Of Discrete Choice Models," The Review of Regional Studies, Southern Regional Science Association, vol. 20(2), pages 39-49, Spring.
    15. Tasos Nikoleris & Mark Hansen, 2012. "Queueing Models for Trajectory-Based Aircraft Operations," Transportation Science, INFORMS, vol. 46(4), pages 501-511, November.
    16. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    17. F. L. Wolf & L. A. Grzelak & G. Deelstra, 2022. "Cheapest-to-deliver collateral: a common factor approach," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 707-723, April.
    18. Xun Li & Zhenyu Wu, 2006. "A semi-analytic method for valuing high-dimensional options on the maximum and minimum of multiple assets," Annals of Finance, Springer, vol. 2(2), pages 179-205, March.
    19. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    20. Vassilis A. Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Cowles Foundation Discussion Papers 1049, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:34:y:2000:i:5:p:419-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.