IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001759.html
   My bibliography  Save this article

Alleviating bus bunching via modular vehicles

Author

Listed:
  • Liu, Yuhao
  • Chen, Zhibin
  • Wang, Xiaolei

Abstract

The notorious phenomenon of bus bunching prevailing in uncontrolled bus systems produces irregular headways and downgrades the level of service by increasing passengers’ expected waiting time. Modular autonomous vehicles (MAVs), due to their ability to split and merge en route, have the potential to help both late and early buses recover from schedule deviation while providing continuous service. In this paper, we propose a novel bus bunching alleviation strategy for MAV-aided transit systems. We first consider a soft vehicle capacity constraint and establish a continuum approximation (CA) model (Model I) to capture the system dynamics intertwined with the MAV splitting and merging operations, and then establish an infinite-horizon stochastic optimization model to determine the optimal splitting and merging strategy. To capture the reality that passengers may fail to board an overcrowded bus, we propose a second model (Model II) by extending Model I to accommodate a hard vehicle capacity constraint. Based on the characteristics of the problem, we develop a customized deep Q-network (DQN) algorithm with multiple relay buffers and a penalized ruin state applicable for both models to optimize the strategy for each MAV. Numerical results show that the strategy obtained via the DQN algorithm is an effective bunch-proof strategy and has a better performance than the myopic strategy for MAV-aided systems and the two-way-looking strategy for conventional bus systems. Sensitivity analyses are also conducted to examine the effectiveness and benefits of the proposed strategy across different operation scenarios.

Suggested Citation

  • Liu, Yuhao & Chen, Zhibin & Wang, Xiaolei, 2024. "Alleviating bus bunching via modular vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001759
    DOI: 10.1016/j.trb.2024.103051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.