IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v178y2023ics0191261523001765.html
   My bibliography  Save this article

The impact of autonomous ships in regional waterways

Author

Listed:
  • Wang, Wei
  • Wang, Shuaian
  • Zhen, Lu
  • Laporte, Gilbert

Abstract

Technological innovation has been reshaping all walks of life, and the marine shipping industry is no exception. Autonomous vessels have gained significant attention due to their numerous advantages. However, regulatory constraints and expensive manufacturing costs are impeding the application of autonomous vessels. To overcome these challenges, this research conducts experiments with autonomous ships on national waterways with less regulation and develops a model to investigate their impact on shipping company operations. The model simultaneously optimizes ship routing, fleet sizing, fleet deployment, and demand fulfillment, taking into account demand uncertainty. Two solution methods, i.e., sample average approximation and a two-phase Benders-based branch-and-cut algorithm, are proposed to solve the problem with acceleration strategies, including column generation and variable fixing. The performance of several solution techniques is tested through numerical experiments using real-world data. Besides, sensitivity analyses are conducted to further discuss the influence of key factors and derive constructive managerial insights for shipping companies.

Suggested Citation

  • Wang, Wei & Wang, Shuaian & Zhen, Lu & Laporte, Gilbert, 2023. "The impact of autonomous ships in regional waterways," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001765
    DOI: 10.1016/j.trb.2023.102851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Chang, Chia-Hsun & Kontovas, Christos & Yu, Qing & Yang, Zaili, 2021. "Risk assessment of the operations of maritime autonomous surface ships," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    4. Archetti, Claudia & Bianchessi, Nicola & Speranza, M. Grazia, 2014. "Branch-and-cut algorithms for the split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 685-698.
    5. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    6. Rosario Paradiso & Roberto Roberti & Demetrio Laganá & Wout Dullaert, 2020. "An Exact Solution Framework for Multitrip Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 68(1), pages 180-198, January.
    7. Hadi Ghaderi, 2019. "Autonomous technologies in short sea shipping: trends, feasibility and implications," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 152-173, January.
    8. Gschwind, Timo & Bianchessi, Nicola & Irnich, Stefan, 2019. "Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 91-104.
    9. Moshe Dror & Pierre Trudeau, 1990. "Split delivery routing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 383-402, June.
    10. François, Véronique & Arda, Yasemin & Crama, Yves & Laporte, Gilbert, 2016. "Large neighborhood search for multi-trip vehicle routing," European Journal of Operational Research, Elsevier, vol. 255(2), pages 422-441.
    11. Hsin-Hung Cheng & Kwan Ouyang, 2021. "Development of a strategic policy for unmanned autonomous ships: a study on Taiwan," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(3), pages 316-330, April.
    12. Nicola Bianchessi & Michael Drexl & Stefan Irnich, 2019. "The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints," Transportation Science, INFORMS, vol. 53(4), pages 1067-1084, March.
    13. Li, Feng & Yang, Dong & Wang, Shuaian & Weng, Jinxian, 2019. "Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 198-210.
    14. Nicola Bianchessi & Stefan Irnich, 2019. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 442-462, March.
    15. Makhsoos, Ashkan & Mousazadeh, Hossein & Mohtasebi, Seyed Saeid & Abdollahzadeh, Mohammadreza & Jafarbiglu, Hamid & Omrani, Elham & Salmani, Yousef & Kiapey, Ali, 2018. "Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle," Energy, Elsevier, vol. 148(C), pages 362-372.
    16. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    17. de Vos, Jiri & Hekkenberg, Robert G. & Valdez Banda, Osiris A., 2021. "The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Munari & Martin Savelsbergh, 2020. "A Column Generation-Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows," SN Operations Research Forum, Springer, vol. 1(4), pages 1-24, December.
    2. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    3. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    5. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    6. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    7. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    8. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    9. Xiaofan Lai & Liang Xu & Zhou Xu & Yang Du, 2023. "An Approximation Algorithm for k -Depot Split Delivery Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1179-1194, September.
    10. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    11. Annelieke C. Baller & Said Dabia & Wout E. H. Dullaert & Daniele Vigo, 2020. "The Vehicle Routing Problem with Partial Outsourcing," Transportation Science, INFORMS, vol. 54(4), pages 1034-1052, July.
    12. Stefan Faldum & Sarah Machate & Timo Gschwind & Stefan Irnich, 2024. "Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1063-1097, December.
    13. Li, Xue & Oh, Poong & Zhou, Yusheng & Yuen, Kum Fai, 2023. "Operational risk identification of maritime surface autonomous ship: A network analysis approach," Transport Policy, Elsevier, vol. 130(C), pages 1-14.
    14. Jianli Shi & Jin Zhang & Kun Wang & Xin Fang, 2018. "Particle Swarm Optimization for Split Delivery Vehicle Routing Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(02), pages 1-42, April.
    15. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    16. Grigorios D. Konstantakopoulos & Sotiris P. Gayialis & Evripidis P. Kechagias, 2022. "Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification," Operational Research, Springer, vol. 22(3), pages 2033-2062, July.
    17. Nicola Bianchessi & Michael Drexl & Stefan Irnich, 2019. "The Split Delivery Vehicle Routing Problem with Time Windows and Customer Inconvenience Constraints," Transportation Science, INFORMS, vol. 53(4), pages 1067-1084, March.
    18. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    19. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    20. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.