IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v128y2019icp254-270.html
   My bibliography  Save this article

Two-layer pointer model of driving style depending on the driving environment

Author

Listed:
  • Suzdaleva, Evženie
  • Nagy, Ivan

Abstract

This paper deals with the task of modeling the driving style depending on the driving environment. The model of the driving style is represented as a two-layer mixture of normal components describing data with two pointers: outer and inner. The inner pointer indicates the actual driving environment categorized as “urban”, “rural” and “highway”. The outer pointer through the determined environment estimates the active driving style from a fuel economy point of view as “low consumption”, “middle consumption” and “high consumption”. All of these driving styles are assumed to exist within each driving environment due to the two-layer model. Parameters of the model and the driving style are estimated online, i.e., while driving using a recursive algorithm under the Bayesian methodology. The main contributions of the presented approach are: (i) the driving style recognition within each of urban, rural and highway environments as well as in the case of switching among them; (ii) the two-layer pointer, which allows us to incorporate the information from continuous data into the model; (iii) the potential use of the data-based model for other measurements using corresponding distributions. The approach was tested using real data.

Suggested Citation

  • Suzdaleva, Evženie & Nagy, Ivan, 2019. "Two-layer pointer model of driving style depending on the driving environment," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 254-270.
  • Handle: RePEc:eee:transb:v:128:y:2019:i:c:p:254-270
    DOI: 10.1016/j.trb.2019.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261519301559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evans, L., 1996. "The dominant role of driver behavior in traffic safety," American Journal of Public Health, American Public Health Association, vol. 86(6), pages 784-786.
    2. Rangaraju, Surendraprabu & De Vroey, Laurent & Messagie, Maarten & Mertens, Jan & Van Mierlo, Joeri, 2015. "Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study," Applied Energy, Elsevier, vol. 148(C), pages 496-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruijun & Zhao, Wanzhong & Wang, Chunyan & Tai, Kang, 2024. "Research on personalized control strategy of EHB system for consistent braking feeling considering driving behaviors," Energy, Elsevier, vol. 293(C).
    2. Josef Jablonský & Michal Černý & Juraj Pekár, 2022. "The last dozen of years of OR research in Czechia and Slovakia," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 435-447, June.
    3. Chengqun, Qiu & Wan, Xinshan & Wang, Na & Cao, Sunjia & Ji, Xinchen & Wu, Kun & Hu, Yaoyu & Meng, Mingyu, 2023. "A novel regenerative braking energy recuperation system for electric vehicles based on driving style," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashraf Mahmud Rayed & Muhammad Atiq Ur Rehman Tariq & Mizanur Rahman & A. W. M. Ng & Md. Khairul Alam Nahid & Mahibuzzaman Mridul & Wazed Al Islam & Muhammad Mohiuddin, 2022. "An Analysis of Driving Behavior of Educated Youth in Bangladesh Considering Physiological, Cultural and Socioeconomic Variables," Sustainability, MDPI, vol. 14(9), pages 1-12, April.
    2. Keiichiro Inagaki & Nobuhiko Wagatsuma & Sou Nobukawa, 2021. "The Effects of Driving Experience on the P300 Event-Related Potential during the Perception of Traffic Scenes," IJERPH, MDPI, vol. 18(19), pages 1-12, October.
    3. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
    4. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    5. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    6. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    7. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    8. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    9. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    10. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    11. Mihály Katona & Tamás Orosz, 2024. "Circular Economy Aspects of Permanent Magnet Synchronous Reluctance Machine Design for Electric Vehicle Applications: A Review," Energies, MDPI, vol. 17(6), pages 1-27, March.
    12. Zhu, Xianwen & Xia, Mingchao & Chiang, Hsiao-Dong, 2018. "Coordinated sectional droop charging control for EV aggregator enhancing frequency stability of microgrid with high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 210(C), pages 936-943.
    13. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    14. Rupp, Matthias & Handschuh, Nils & Rieke, Christian & Kuperjans, Isabel, 2019. "Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany," Applied Energy, Elsevier, vol. 237(C), pages 618-634.
    15. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    16. Zhang, Xingping & Liang, Yanni & Liu, Wenfeng, 2017. "Pricing model for the charging of electric vehicles based on system dynamics in Beijing," Energy, Elsevier, vol. 119(C), pages 218-234.
    17. Sun, Lishan & Wang, Shunchao & Liu, Shuli & Yao, Liya & Luo, Wei & Shukla, Ashish, 2018. "A completive research on the feasibility and adaptation of shared transportation in mega-cities – A case study in Beijing," Applied Energy, Elsevier, vol. 230(C), pages 1014-1033.
    18. Yakup Çelikbilek & Sarbast Moslem, 2023. "A grey multi criteria decision making application for analyzing the essential reasons of recurrent lane change," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 916-941, June.
    19. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    20. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:128:y:2019:i:c:p:254-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.