IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v108y2018icp172-187.html
   My bibliography  Save this article

An optimization model to measure utility of joint and solo activities

Author

Listed:
  • Allahviranloo, Mahdieh
  • Axhausen, Kay

Abstract

The choice of ‘dining out with friends’ or ‘wrapping up unfinished tasks at work’ depends on the utility/satisfaction gained from performing each activity while being constrained by time and physical resources. In fact, such parameters as ‘type’, ‘time of day’, ‘duration’, ‘location’, ‘companionship’, and etc. are defining factors in quantifying the utility of activities - a challenging problem which has been the focus of research for many years. This paper proposes a methodology to estimate the parameters of utility distributions for joint and solo activities, along with the penalty values associated with the deviation of activity start time and duration from their modal values. The study utilizes travel survey data collected in Frauenfeld, Switzerland, over the period of six weeks in 2003. The proposed model is a bi-level optimization model, where the upper level maximizes the accuracy of the activity scheduling on the aggregate level and is measured using the outputs of lower level optimization models. Each lower level model is a variation of pickup and delivery problem and schedules activities for each individual in the population using the parameters of utility distribution and penalty values generated by the Genetic Algorithm. The results indicate that travelers are trying to be more consistent with their arrival time to work, school and pickup/drop off activities: the associated penalty values for deviation from the modal value for arrival time to work and school activities are high. Additionally, significant differences in the parameters of the estimated utility distribution for joint and solo activities are observed, reflecting the fact that utility gained from joint and solo activities are different and needs more in-depth investigation. The proposed methodology has the potential to be applied to any multiday travel survey data, which due to advances made in handheld smart devices and mobile applications are becoming more convenient to collect.

Suggested Citation

  • Allahviranloo, Mahdieh & Axhausen, Kay, 2018. "An optimization model to measure utility of joint and solo activities," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 172-187.
  • Handle: RePEc:eee:transb:v:108:y:2018:i:c:p:172-187
    DOI: 10.1016/j.trb.2017.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517300528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Chinh & Mulley, Corinne, 2015. "Intra-household Interactions in tour-based mode choice: The role of social, temporal, spatial and resource constraints," Transport Policy, Elsevier, vol. 38(C), pages 52-63.
    2. Kathleen Deutsch & Konstadinos Goulias, 2013. "Decision makers and socializers, social networks and the role of individuals as participants," Transportation, Springer, vol. 40(4), pages 755-771, July.
    3. Scott, Darren M. & Kanaroglou, Pavlos S., 2002. "An activity-episode generation model that captures interactions between household heads: development and empirical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 875-896, December.
    4. K. W. Axhausen & M. Löchl & R. Schlich & T. Buhl & P. Widmer, 2007. "Fatigue in long-duration travel diaries," Transportation, Springer, vol. 34(2), pages 143-160, March.
    5. Sivaramakrishnan Srinivasan & Chandra Bhat, 2008. "An exploratory analysis of joint-activity participation characteristics using the American time use survey," Transportation, Springer, vol. 35(3), pages 301-327, May.
    6. Hejun Kang & Darren Scott, 2008. "An integrated spatio-temporal GIS toolkit for exploring intra-household interactions," Transportation, Springer, vol. 35(2), pages 253-268, March.
    7. Eric Miller & Matthew Roorda & Juan Carrasco, 2005. "A tour-based model of travel mode choice," Transportation, Springer, vol. 32(4), pages 399-422, July.
    8. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    9. Sivaramakrishnan Srinivasan & Chandra Bhat, 2006. "A multiple discrete-continuous model for independent- and joint-discretionary-activity participation decisions," Transportation, Springer, vol. 33(5), pages 497-515, September.
    10. John Gliebe & Frank Koppelman, 2005. "Modeling household activity–travel interactions as parallel constrained choices," Transportation, Springer, vol. 32(5), pages 449-471, September.
    11. Mark Bradley & Peter Vovsha, 2005. "A model for joint choice of daily activity pattern types of household members," Transportation, Springer, vol. 32(5), pages 545-571, September.
    12. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    13. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    14. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    15. Ronald, Nicole & Arentze, Theo & Timmermans, Harry, 2012. "Modeling social interactions between individuals for joint activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 276-290.
    16. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.
    17. Zhang, Junyi & Timmermans, Harry J. P. & Borgers, Aloys, 2005. "A model of household task allocation and time use," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 81-95, January.
    18. Jara-Díaz, Sergio R. & Munizaga, Marcela A. & Greeven, Paulina & Guerra, Reinaldo & Axhausen, Kay, 2008. "Estimating the value of leisure from a time allocation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 946-957, December.
    19. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    20. John Gliebe & Frank Koppelman, 2002. "A model of joint activity participation between household members," Transportation, Springer, vol. 29(1), pages 49-72, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Chinh & Mulley, Corinne, 2015. "Intra-household Interactions in tour-based mode choice: The role of social, temporal, spatial and resource constraints," Transport Policy, Elsevier, vol. 38(C), pages 52-63.
    2. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    3. Sarangi, Punyabeet & Manoj, M., 2022. "Task-allocation among adult household members by activity purpose and accompanying person," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 246-266.
    4. Hu, Yang & van Wee, Bert & Ettema, Dick, 2023. "Intra-household decisions and the impact of the built environment on activity-travel behavior: A review of the literature," Journal of Transport Geography, Elsevier, vol. 106(C).
    5. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    6. Hejun Kang & Darren Scott, 2011. "Impact of different criteria for identifying intra-household interactions: a case study of household time allocation," Transportation, Springer, vol. 38(1), pages 81-99, January.
    7. André de Palma & Nathalie Picard & Robin Lindsey, 2024. "Activity and transportation decisions within households," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 426-451, Edward Elgar Publishing.
    8. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    9. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    10. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    11. Sui Tao & Sylvia Y. He, 2021. "Job accessibility and joint household travel: a study of Hong Kong with a particular focus on new town residents," Transportation, Springer, vol. 48(3), pages 1379-1407, June.
    12. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    13. Sui Tao & Sylvia Y. He, 0. "Job accessibility and joint household travel: a study of Hong Kong with a particular focus on new town residents," Transportation, Springer, vol. 0, pages 1-29.
    14. Yan, Qianqian & Feng, Tao & Timmermans, Harry, 2023. "A model of household shared parking decisions incorporating equity-seeking household dynamics and leadership personality traits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    15. Punyabeet Sarangi & M. Manoj, 2022. "Analysis of activity participation and time use decisions of partners: the context of low-and high-income households," Transportation, Springer, vol. 49(3), pages 1017-1058, June.
    16. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    17. Frank Goetzke & Regine Gerike & Antonio Páez & Elenna Dugundji, 2015. "Social interactions in transportation: analyzing groups and spatial networks," Transportation, Springer, vol. 42(5), pages 723-731, September.
    18. Lin, Tao & Wang, Donggen, 2014. "Social networks and joint/solo activity–travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 18-31.
    19. Wang, Donggen & Li, Jiukun, 2009. "A model of household time allocation taking into consideration of hiring domestic helpers," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 204-216, February.
    20. Nathalie Picard & Andre de Palma & Sophie Dantan, 2013. "Intra-Household Discrete Choice Models Of Mode Choice And Residential Location," Articles, International Journal of Transport Economics, vol. 40(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:108:y:2018:i:c:p:172-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.