IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v104y2017icp602-615.html
   My bibliography  Save this article

When adjacent lane dependencies dominate the uncongested regime of the fundamental relationship

Author

Listed:
  • Ponnu, Balaji
  • Coifman, Benjamin

Abstract

This paper presents an empirical study of the fundamental relationship between speed, v, and flow, q, (denoted vqFR) under low flow in the uncongested regime. Using new analytical techniques to extract more information from loop detector data, the vqFR from a time of day HOV lane exhibits high v that slowly drops as q increases. This curve arises after binning several million vehicles by q and only considering those bins with q < 1200 vph. A surprising thing happens when further binning the data by the adjacent lane speed (v2): the vqFR expands in to a fan of curves that decrease in magnitude and slope with decreasing v2. Yet each curve in the fan continues to exhibit uncongested trends, ranging from a flat curve consistent with recent editions of the Highway Capacity Manual to downward sloping curves. It is shown that this behavior was not due to the HOV operations per se, the same behavior also arises in the non-HOV period when the lane serves all vehicles and it is also observed at another facility without any HOV restrictions. This dependency on the adjacent lane is absent from most traffic flow theories.

Suggested Citation

  • Ponnu, Balaji & Coifman, Benjamin, 2017. "When adjacent lane dependencies dominate the uncongested regime of the fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 602-615.
  • Handle: RePEc:eee:transb:v:104:y:2017:i:c:p:602-615
    DOI: 10.1016/j.trb.2017.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517302874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Coifman, Benjamin, 2014. "Revisiting the empirical fundamental relationship," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 173-184.
    4. Shankar, Venkataraman & Mannering, Fred, 1998. "Modeling the endogeneity of lane-mean speeds and lane-speed deviations: a structural equations approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 311-322, September.
    5. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    6. Denos C. Gazis & Robert Herman & George H. Weiss, 1962. "Density Oscillations Between Lanes of a Multilane Highway," Operations Research, INFORMS, vol. 10(5), pages 658-667, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    2. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    3. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    4. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    5. Shanchuan Yu & Yu Chen & Lang Song & Zhaoze Xuan & Yi Li, 2023. "Modelling and Mitigating Secondary Crash Risk for Serial Tunnels on Freeway via Lighting-Related Microscopic Traffic Model with Inter-Lane Dependency," IJERPH, MDPI, vol. 20(4), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    2. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    4. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    5. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    6. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    7. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    8. Gomes, Gabriel C., 2004. "Optimization and Microsimulation of On-ramp Metering for Congested Freeways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt95k1q411, Institute of Transportation Studies, UC Berkeley.
    9. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    10. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    11. Malachy Carey & Chandra Balijepalli & David Watling, 2015. "Extending the Cell Transmission Model to Multiple Lanes and Lane-Changing," Networks and Spatial Economics, Springer, vol. 15(3), pages 507-535, September.
    12. Coifman, Benjamin, 2015. "Empirical flow-density and speed-spacing relationships: Evidence of vehicle length dependency," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 54-65.
    13. Yanhong Wang & Rui Jiang & Yu (Marco) Nie & Ziyou Gao, 2021. "Impact of Information on Topology-Induced Traffic Oscillations," Transportation Science, INFORMS, vol. 55(2), pages 475-490, March.
    14. Marques, W. & Méndez, A.R. & Velasco, R.M., 2021. "The vehicle length effect on the traffic flow fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    15. Soulaymane Kachani & Georgia Perakis, 2009. "A Dynamic Travel Time Model for Spillback," Networks and Spatial Economics, Springer, vol. 9(4), pages 595-618, December.
    16. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    17. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    20. Jin, W. L. & Zhang, H. M., 2003. "The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 207-223, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:104:y:2017:i:c:p:602-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.