IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v100y2017icp156-174.html
   My bibliography  Save this article

Optimal transportation and shoreline infrastructure investment planning under a stochastic climate future

Author

Listed:
  • Asadabadi, Ali
  • Miller-Hooks, Elise

Abstract

This paper studies the problem of optimal long-term transportation investment planning to protect from and mitigate impacts of climate change on roadway performance. The problem of choosing the extent, specific system components, and timing of these investments over a long time horizon (e.g., 40–60 years) is modeled as a multi-stage, stochastic, bi-level, mixed-integer program wherein cost-effective investment decisions are taken in the upper level. The effects of possible episodic precipitation events on experienced travel delays are estimated from solution of a lower-level, traffic equilibrium problem. The episodic events and longer-term sea level changes exist on different time scales, making their integration a crucial element in model development. The optimal investment strategy is obtained at a Stackelberg equilibrium that is reached upon solution to the bilevel program. A recursive noisy genetic algorithm (rNGA), designed to address large-scale applications, is proposed for this purpose. The rNGA seeks the optimal combination of investment decisions to take now given only probabilistic information on the predicted sea level rise trend for a long planning horizon and associated likely extreme climatic events (in terms of their frequencies and intensities) that might arise over that planning period. The proposed solution method enables the evaluation of decisions concerning where, when and to what level to make infrastructure investments. The proposed rNGA has broad applicability to more general multi-stage, stochastic, bilevel, nonconvex, mixed integer programs that arise in many applications. The proposed solution methodology is demonstrated on an example representing a portion of the Washington, D.C. Greater Metropolitan area adjacent to the Potomac River.

Suggested Citation

  • Asadabadi, Ali & Miller-Hooks, Elise, 2017. "Optimal transportation and shoreline infrastructure investment planning under a stochastic climate future," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 156-174.
  • Handle: RePEc:eee:transb:v:100:y:2017:i:c:p:156-174
    DOI: 10.1016/j.trb.2016.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126151630220X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    2. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    3. Carel Eijgenraam & Jarl Kind & Carlijn Bak & Ruud Brekelmans & Dick den Hertog & Matthijs Duits & Kees Roos & Pieter Vermeer & Wim Kuijken, 2014. "Economically Efficient Standards to Protect the Netherlands Against Flooding," Interfaces, INFORMS, vol. 44(1), pages 7-21, February.
    4. Larsson, Torbjörn & Patriksson, Michael, 1999. "Side constrained traffic equilibrium models-- analysis, computation and applications," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 233-264, May.
    5. Torbjörn Larsson & Michael Patriksson, 1992. "Simplicial Decomposition with Disaggregated Representation for the Traffic Assignment Problem," Transportation Science, INFORMS, vol. 26(1), pages 4-17, February.
    6. Wang, David Z.W. & Lo, Hong K., 2010. "Global optimum of the linearized network design problem with equilibrium flows," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 482-492, May.
    7. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    8. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    9. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bian, Zheyong & Bai, Yun & Douglas, W. Scott & Maher, Ali & Liu, Xiang, 2022. "Multi-year planning for optimal navigation channel dredging and dredged material management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    3. Pal, Preeti & Gopal, P.R.C. & Ramkumar, M., 2023. "Impact of transportation on climate change: An ecological modernization theoretical perspective," Transport Policy, Elsevier, vol. 130(C), pages 167-183.
    4. Papakonstantinou, Ilia & Lee, Jinwoo & Madanat, Samer Michel, 2019. "Game theoretic approaches for highway infrastructure protection against sea level rise: Co-opetition among multiple players," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 21-37.
    5. Asadabadi, Ali & Miller-Hooks, Elise, 2017. "Assessing strategies for protecting transportation infrastructure from an uncertain climate future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 27-41.
    6. Ahadi, Khatereh & Sullivan, Kelly M. & Mitchell, Kenneth Ned, 2018. "Budgeting maintenance dredging projects under uncertainty to improve the inland waterway network performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 63-87.
    7. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    8. Haiying Zhou & Wenjing Zhang, 2022. "Choice of Emission Control Technology in Port Areas with Customers’ Low-Carbon Preference," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    9. Itoh, Ryo, 2018. "Is transportation infrastructure cost recoverable under the risk of disasters?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 457-465.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiangdong & Chen, Anthony & Xu, Guangming & Yang, Chao & Lam, William H.K., 2021. "Enhancing network resilience by adding redundancy to road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    3. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    4. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    5. Wei Huang & Guangming Xu & Hong K. Lo, 2020. "Pareto-Optimal Sustainable Transportation Network Design under Spatial Queuing," Networks and Spatial Economics, Springer, vol. 20(3), pages 637-673, September.
    6. Hong Zheng & Xiaozheng He & Yongfu Li & Srinivas Peeta, 2017. "Traffic Equilibrium and Charging Facility Locations for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(2), pages 435-457, June.
    7. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    8. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    9. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    10. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    11. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    12. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    13. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    14. Di, Xuan & Ma, Rui & Liu, Henry X. & Ban, Xuegang (Jeff), 2018. "A link-node reformulation of ridesharing user equilibrium with network design," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 230-255.
    15. Khooban, Zohreh & Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y., 2015. "Mixed network design using hybrid scatter search," European Journal of Operational Research, Elsevier, vol. 247(3), pages 699-710.
    16. Hadi Karimi & Bahador Ghadirifaraz & Seyed Nader Shetab Boushehri & Seyyed-Mohammadreza Hosseininasab & Narges Rafiei, 2022. "Reducing traffic congestion and increasing sustainability in special urban areas through one-way traffic reconfiguration," Transportation, Springer, vol. 49(1), pages 37-60, February.
    17. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    18. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    19. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    20. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:100:y:2017:i:c:p:156-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.