IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v100y2017icp138-155.html
   My bibliography  Save this article

A model of pedestrian delay at unsignalized intersections in urban networks

Author

Listed:
  • Zheng, Yinan
  • Elefteriadou, Lily

Abstract

Delay is an important performance measure for pedestrian crossings considering their interactions with other road users. This study provides an improved analytical model to mathematically estimate pedestrian delay using renewal theory, which considers driver yielding and vehicle platooning. A generalized model is first provided to accommodate different traffic flow and driver behavior assumptions. Then the proposed model is developed on the basis of a mixture of free traffic and platooned traffic with consideration of driver yielding behaviors to better replicate field conditions in an urban setting. A second application using the HCM 2010 assumptions is also derived to compare it to the HCM 2010 model. Lastly, field data were collected and used for validation from two locations: Gainesville, FL and Washington, D.C. A simulation via MATLAB is performed to evaluate the model results for a variety of cases. The comparisons to the field data as well as the simulation confirm the applicability and accuracy of the proposed model. It is also found that the current HCM 2010 model overestimates the pedestrian delay compared with field data.

Suggested Citation

  • Zheng, Yinan & Elefteriadou, Lily, 2017. "A model of pedestrian delay at unsignalized intersections in urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 138-155.
  • Handle: RePEc:eee:transb:v:100:y:2017:i:c:p:138-155
    DOI: 10.1016/j.trb.2017.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515301399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoping Guo & Michael C. Dunne & John A. Black, 2004. "Modeling of Pedestrian Delays with Pulsed Vehicular Traffic Flow," Transportation Science, INFORMS, vol. 38(1), pages 86-96, February.
    2. George H. Weiss & Alexei A. Maradudin, 1962. "Some Problems in Traffic Delay," Operations Research, INFORMS, vol. 10(1), pages 74-104, February.
    3. Avineri, Erel & Shinar, David & Susilo, Yusak O., 2011. "Pedestrians’ behaviour in cross walks: The effects of fear of falling and age," Working papers in Transport Economics 2011:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    4. R. J. Troutbeck, 1986. "Average Delay at an Unsignalized Intersection with Two Major Streams Each Having a Dichotomized Headway Distribution," Transportation Science, INFORMS, vol. 20(4), pages 272-286, November.
    5. Heidemann, Dirk & Wegmann, Helmut, 1997. "Queueing at unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 239-263, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dragan Stanimirović & Vuk Bogdanović & Slavko Davidović & Edmundas Kazimieras Zavadskas & Željko Stević, 2019. "The Influence of the Participation of Non-Resident Drivers on Roundabout Capacity," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    2. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    3. Yining Lu & Tao Wang & Zhuangzhuang Wang & Chaoyang Li & Yi Zhang, 2022. "Modeling the Dynamic Exclusive Pedestrian Phase Based on Transportation Equity and Cost Analysis," IJERPH, MDPI, vol. 19(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chevallier, Estelle & Leclercq, Ludovic, 2007. "A macroscopic theory for unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1139-1150, December.
    2. Abhishek & Marko A. A. Boon & Michel Mandjes, 2019. "Generalized gap acceptance models for unsignalized intersections," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 385-409, June.
    3. Abhishek, & Boon, Marko A.A. & Mandjes, Michel & Núñez-Queija, Rudesindo, 2019. "Congestion analysis of unsignalized intersections: The impact of impatience and Markov platooning," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1026-1035.
    4. Xiaoping Guo & Michael C. Dunne & John A. Black, 2004. "Modeling of Pedestrian Delays with Pulsed Vehicular Traffic Flow," Transportation Science, INFORMS, vol. 38(1), pages 86-96, February.
    5. Troutbeck, Rod J. & Kako, Soichiro, 1999. "Limited priority merge at unsignalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 291-304, April.
    6. Huasheng Liu & Yuqi Zhao & Jin Li & Yu Li & Xiaowen Li & Sha Yang, 2022. "A Two-Phase, Joint-Commuting Model for Primary and Secondary Schools Considering Parking Sharing," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    7. Dekker, H., 1991. "Multisite spin hopping analysis of multilevel dissipative quantum tunneling and coherence at finite temperatures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(2), pages 289-331.
    8. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    9. Sullivan, Daniel P. & Troutbeck, Rod J., 1997. "An exponential relationship for the proportion of free vehicles on arterial roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(1), pages 21-33, January.
    10. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    11. Yuanyuan Wu & Feng Zhu, 2021. "Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    12. Mung, Gregory K. S. & Poon, Antonio C. K. & Lam, William H. K. & Ip, W. C., 1998. "Distribution of the maximum number of opposed turns in a signal cycle at fixed time traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 373-386, August.
    13. Ran Zhang & Zhonghua Wei & Heng Gu & Shi Qiu, 2021. "Behavior Evolution of Multi-Group in the Process of Pedestrian Crossing Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    14. Elżbieta Macioszek, 2020. "Roundabout Entry Capacity Calculation—A Case Study Based on Roundabouts in Tokyo, Japan, and Tokyo Surroundings," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    15. Velan, Shane & Aerde, Michel Van, 1998. "The impact of driver and flow variability on capacity estimates of permissive movements," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 509-527, September.
    16. Heidemann, Dirk & Wegmann, Helmut, 1997. "Queueing at unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 239-263, June.
    17. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    18. Lu, Jing & Osorio, Carolina, 2024. "Link transmission model: A formulation with enhanced compute time for large-scale network optimization," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    19. Arshi, Abubeker N. & Alhajyaseen, Wael K.M. & Nakamura, Hideki & Zhang, Xin, 2018. "A comparative study on the operational performance of four-leg intersections by control type," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 52-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:100:y:2017:i:c:p:138-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.