IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v94y2016icp446-460.html
   My bibliography  Save this article

Map-induced journey-planning biases for a simple network: A Docklands Light Railway study

Author

Listed:
  • Roberts, Maxwell J.
  • Rose, Doug

Abstract

A usability study was conducted to identify the most effective prototype Docklands Light Railway map for installation on trains. This comprised a series of tasks that required station finding and also planning of routes between pairs of stations, with response time and accuracy as measures of performance. In addition, subjective ratings of map design were collected via questionnaire-based evaluations, and also ranked preferences between designs. A clear best-option was easily identifiable as a result of this research. The existing design was associated with the most journey planning errors, and two of the prototypes were associated with inefficient journey choices. The latter finding suggested that respondents were using unsophisticated planning strategies that were put at a disadvantage by certain route depictions. This has wider implications for suggestions that schematic maps should maintain topographical relationships in order to facilitate appropriate journey choices, with the danger that the inevitable increased complexity of line trajectories for such designs would simultaneously reduce the ability of passengers to identify the most appropriate routes.

Suggested Citation

  • Roberts, Maxwell J. & Rose, Doug, 2016. "Map-induced journey-planning biases for a simple network: A Docklands Light Railway study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 446-460.
  • Handle: RePEc:eee:transa:v:94:y:2016:i:c:p:446-460
    DOI: 10.1016/j.tra.2016.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415300306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raveau, Sebastián & Muñoz, Juan Carlos & de Grange, Louis, 2011. "A topological route choice model for metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 138-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    2. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    3. Kaplan, Sigal & Popoks, Dmitrijs & Prato, Carlo Giacomo & Ceder, Avishai (Avi), 2014. "Using connectivity for measuring equity in transit provision," Journal of Transport Geography, Elsevier, vol. 37(C), pages 82-92.
    4. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    5. Daniel A Rodriguez & Jennifer Rogers, 2014. "Can Housing and Accessibility Information Influence Residential Location Choice and Travel Behavior? An Experimental Study," Environment and Planning B, , vol. 41(3), pages 534-550, June.
    6. Marie Karen Anderson & Otto Anker Nielsen & Carlo Giacomo Prato, 2017. "Multimodal route choice models of public transport passengers in the Greater Copenhagen Area," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 221-245, September.
    7. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    9. Raveau, Sebastián & Yáñez, María Francisca & Ortúzar, Juan de Dios, 2012. "Practical and empirical identifiability of hybrid discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1374-1383.
    10. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    11. Xingchuan Wang & Enjian Yao & Shasha Liu, 2018. "Travel Choice Analysis under Metro Emergency Context: Utility? Regret? Or Both?," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    12. Xu, Xinyue & Liu, Jing & Zhang, Anzhong & XieLan, Shiyu & Li, Zinuo & Liu, Jun & Ran, Bin, 2024. "The impacts of COVID-19 on route choice with guidance information in urban rail transit of megacities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    13. Louis Grange & Felipe González & Ignacio Vargas & Rodrigo Troncoso, 2015. "A Logit Model With Endogenous Explanatory Variables and Network Externalities," Networks and Spatial Economics, Springer, vol. 15(1), pages 89-116, March.
    14. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    15. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    16. Tamblay, Sebastián & Galilea, Patricia & Iglesias, Paula & Raveau, Sebastián & Muñoz, Juan Carlos, 2016. "A zonal inference model based on observed smart-card transactions for Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 44-54.
    17. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    18. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Zhou, You & Zhang, Lingzhu & Chiaradia, Alain J F, 2021. "An adaptation of reference class forecasting for the assessment of large-scale urban planning vision, a SEM-ANN approach to the case of Hong Kong Lantau tomorrow," Land Use Policy, Elsevier, vol. 109(C).
    20. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:94:y:2016:i:c:p:446-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.