IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v88y2016icp117-133.html
   My bibliography  Save this article

Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis

Author

Listed:
  • Pinjari, Abdul Rawoof
  • Augustin, Bertho
  • Sivaraman, Vijayaraghavan
  • Faghih Imani, Ahmadreza
  • Eluru, Naveen
  • Pendyala, Ram M.

Abstract

We propose a stochastic frontier approach to estimate budgets for the multiple discrete–continuous extreme value (MDCEV) model. The approach is useful when the underlying time and/or money budgets driving a choice situation are unobserved, but the expenditures on the choice alternatives of interest are observed. Several MDCEV applications hitherto used the observed total expenditure on the choice alternatives as the budget to model expenditure allocation among choice alternatives. This does not allow for increases or decreases in the total expenditure due to changes in choice alternative-specific attributes, but only allows a reallocation of the observed total expenditure among different alternatives. The stochastic frontier approach helps address this issue by invoking the notion that consumers operate under latent budgets that can be conceived (and modeled) as the maximum possible expenditure they are willing to incur. The proposed method is applied to analyze the daily out-of-home activity participation and time-use patterns in a survey sample of non-working adults in Florida. First, a stochastic frontier regression is performed on the observed out-of-home activity time expenditure (OH-ATE) to estimate the unobserved out-of-home activity time frontier (OH-ATF). The estimated frontier is interpreted as a subjective limit or maximum possible time individuals can allocate to out-of-home activities and used as the time budget governing out-of-home time-use choices in an MDCEV model. The efficacy of this approach is compared with other approaches for estimating time budgets for the MDCEV model, including: (a) a log-linear regression on the total observed expenditure for out-of-home activities and (b) arbitrarily assumed, constant time budgets for all individuals in the sample. A comparison of predictive accuracy in time-use patterns suggests that the stochastic frontier and log-linear regression approaches perform better than arbitrary assumptions on time budgets. Between the stochastic frontier and log-linear regression approaches, the former results in slightly better predictions of activity participation rates while the latter results in slightly better predictions of activity durations. A comparison of policy simulations demonstrates that the stochastic frontier approach allows for the total out-of-home activity time expenditure to either expand or shrink due to changes in alternative-specific attributes. The log-linear regression approach allows for changes in total time expenditure due to changes in decision-maker attributes, but not due to changes in alternative-specific attributes.

Suggested Citation

  • Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.
  • Handle: RePEc:eee:transa:v:88:y:2016:i:c:p:117-133
    DOI: 10.1016/j.tra.2016.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416302567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farooq, Bilal & Miller, Eric J. & Haider, Murtaza, 2013. "A multidimensional decisions modeling framework for built space supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(3), pages 61-74.
    2. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    3. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    4. Caleb Van Nostrand & Vijayaraghavan Sivaraman & Abdul Pinjari, 2013. "Analysis of long-distance vacation travel demand in the United States: a multiple discrete–continuous choice framework," Transportation, Springer, vol. 40(1), pages 151-171, January.
    5. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    6. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.
    7. Sobhani, Anae & Eluru, Naveen & Faghih-Imani, Ahmadreza, 2013. "A latent segmentation based multiple discrete continuous extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 154-169.
    8. von Haefen, Roger H., 2010. "Incomplete Demand Systems, Corner Solutions, and Welfare Measurement," Agricultural and Resource Economics Review, Cambridge University Press, vol. 39(1), pages 22-36, February.
    9. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    10. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    11. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    12. Deaton,Angus & Muellbauer,John, 1980. "Economics and Consumer Behavior," Cambridge Books, Cambridge University Press, number 9780521296762.
    13. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    14. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    15. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    16. Amlan Banerjee & Xin Ye & Ram Pendyala, 2007. "Understanding Travel Time Expenditures Around the World: Exploring the Notion of a Travel Time Frontier," Transportation, Springer, vol. 34(1), pages 51-65, January.
    17. Pinjari, Abdul Rawoof, 2011. "Generalized extreme value (GEV)-based error structures for multiple discrete-continuous choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 474-489, March.
    18. Ahn, Jiwoon & Jeong, Gicheol & Kim, Yeonbae, 2008. "A forecast of household ownership and use of alternative fuel vehicles: A multiple discrete-continuous choice approach," Energy Economics, Elsevier, vol. 30(5), pages 2091-2104, September.
    19. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    20. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    2. Ke Wang & Xin Ye, 2021. "Development of alternative stochastic frontier models for estimating time-space prism vertices," Transportation, Springer, vol. 48(2), pages 773-807, April.
    3. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    4. Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
    5. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    6. de Grange, Louis & Troncoso, Rodrigo & Briones, Ignacio, 2018. "Cost, production and efficiency in local bus industry: An empirical analysis for the bus system of Santiago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 1-11.
    7. Morris, Eric A. & Blumenberg, Evelyn & Guerra, Erick, 2020. "Does lacking a car put the brakes on activity participation? Private vehicle access and access to opportunities among low-income adults," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 375-397.
    8. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    9. Andrea Pellegrini & Igor Sarman & Rico Maggi, 2021. "Understanding tourists’ expenditure patterns: a stochastic frontier approach within the framework of multiple discrete–continuous choices," Transportation, Springer, vol. 48(2), pages 931-951, April.
    10. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    11. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    2. Jian, Sisi & Rashidi, Taha Hossein & Dixit, Vinayak, 2017. "An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 362-376.
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    5. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    6. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    7. Bhat, Chandra R. & Castro, Marisol & Pinjari, Abdul Rawoof, 2015. "Allowing for complementarity and rich substitution patterns in multiple discrete–continuous models," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 59-77.
    8. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
    9. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    10. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    11. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    12. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    13. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    14. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    15. Bhat, Chandra R., 2022. "A new closed-form two-stage budgeting-based multiple discrete-continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 162-192.
    16. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    17. Lu, Hui & Hess, Stephane & Daly, Andrew & Rohr, Charlene, 2017. "Measuring the impact of alcohol multi-buy promotions on consumers' purchase behaviour," Journal of choice modelling, Elsevier, vol. 24(C), pages 75-95.
    18. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    19. Calastri, Chiara & Giergiczny, Marek & Zedrosser, Andreas & Hess, Stephane, 2023. "Modelling activity patterns of wild animals - An application of the multiple discrete-continuous extreme value (MDCEV) model," Journal of choice modelling, Elsevier, vol. 47(C).
    20. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:88:y:2016:i:c:p:117-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.