IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v178y2023ics0965856423002823.html
   My bibliography  Save this article

A data-driven game theoretic multi-objective hybrid algorithm for the Dial-A-Ride Problem with multiple time windows

Author

Listed:
  • Belhaiza, Slim
  • M’Hallah, Rym
  • Al-Qarni, Munirah

Abstract

The Dial-A-Ride Problem (DARP) designs pick-up and delivery routes for a set of customers. It arises in door-to-door transport services tailored to elderly and impaired people. It minimizes operational costs while accommodating as many drivers’ and customers’ constraints as possible; e.g., constraints on transit time and time windows on pick up and drop off.

Suggested Citation

  • Belhaiza, Slim & M’Hallah, Rym & Al-Qarni, Munirah, 2023. "A data-driven game theoretic multi-objective hybrid algorithm for the Dial-A-Ride Problem with multiple time windows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002823
    DOI: 10.1016/j.tra.2023.103862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423002823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Liping, 2002. "A simulation model for evaluating advanced dial-a-ride paratransit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 291-307, May.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    4. Hoogeboom, Maaike & Dullaert, Wout, 2019. "Vehicle routing with arrival time diversification," European Journal of Operational Research, Elsevier, vol. 275(1), pages 93-107.
    5. Slim Belhaiza & Rym M’Hallah & Ghassen Ben Brahim & Gilbert Laporte, 2019. "Three multi-start data-driven evolutionary heuristics for the vehicle routing problem with multiple time windows," Journal of Heuristics, Springer, vol. 25(3), pages 485-515, June.
    6. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    7. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    8. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    9. Masmoudi, Mohamed Amine & Hosny, Manar & Braekers, Kris & Dammak, Abdelaziz, 2016. "Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 60-80.
    10. Marković, Nikola & Kim, Myungseob (Edward) & Schonfeld, Paul, 2016. "Statistical and machine learning approach for planning dial-a-ride systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 41-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    2. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    3. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    4. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    5. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    6. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    7. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    8. Aslaksen, Ingvild Eide & Svanberg, Elisabeth & Fagerholt, Kjetil & Johnsen, Lennart C. & Meisel, Frank, 2021. "A combined dial-a-ride and fixed schedule ferry service for coastal cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 306-325.
    9. Guo, Jiaqi & Long, Jiancheng & Xu, Xiaoming & Yu, Miao & Yuan, Kai, 2022. "The vehicle routing problem of intercity ride-sharing between two cities," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 113-139.
    10. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    11. Wang, Hongfei & Guan, Hongzhi & Qin, Huanmei & Zhao, Pengfei, 2024. "Assessing the sustainability of time-dependent electric demand responsive transit service through deep reinforcement learning," Energy, Elsevier, vol. 296(C).
    12. Ertan Yakıcı & Robert F. Dell & Travis Hartman & Connor McLemore, 2018. "Daily aircraft routing for amphibious ready groups," Annals of Operations Research, Springer, vol. 264(1), pages 477-498, May.
    13. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    14. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    15. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Operational effects of service level variations for the dial-a-ride problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 71-90, March.
    16. Dong, Xiaotong & Chow, Joseph Y.J. & Waller, S. Travis & Rey, David, 2022. "A chance-constrained dial-a-ride problem with utility-maximising demand and multiple pricing structures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Häme, Lauri, 2011. "An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows," European Journal of Operational Research, Elsevier, vol. 209(1), pages 11-22, February.
    18. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    19. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    20. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2020. "Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:178:y:2023:i:c:s0965856423002823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.