IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v162y2022icp104-120.html
   My bibliography  Save this article

An optimization model to assign seats in long distance trains to minimize SARS-CoV-2 diffusion

Author

Listed:
  • Haque, Md Tabish
  • Hamid, Faiz

Abstract

The unprecedented spread of SARS-CoV-2 has pushed governmental bodies to undertake stringent actions like travel regulations, localized curfews, curb activity participation, etc. These restrictions assisted in controlling the proliferation of the virus; however, they severely affected major economies. This compels policymakers and planners to devise strategies that restrain virus spread as well as operationalize economic activities. In this context, we discuss some of the potential implications of seat inventory management in long-distance passenger trains and create a balance between operators’ operational efficiency and passengers’ safety. The paper introduces a novel seat assignment policy that aims to mitigate virus diffusion risk among passengers by reducing interaction among them. A mixed-integer linear programming problem has been formulated that concomitantly maximizes the operator’s revenue and minimizes virus diffusion. The validity of the model has been tested using real-life data obtained from Indian Railways. The computational results show that a mere 50% capacity utilization may distress operators’ economics and prove ineffectual in controlling SARS-CoV-2 transmission. The proposed model produces encouraging results in restricting virus diffusion and improving revenue even under 100% capacity utilization.

Suggested Citation

  • Haque, Md Tabish & Hamid, Faiz, 2022. "An optimization model to assign seats in long distance trains to minimize SARS-CoV-2 diffusion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 104-120.
  • Handle: RePEc:eee:transa:v:162:y:2022:i:c:p:104-120
    DOI: 10.1016/j.tra.2022.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422001185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ciancimino & G. Inzerillo & S. Lucidi & L. Palagi, 1999. "A Mathematical Programming Approach for the Solution of the Railway Yield Management Problem," Transportation Science, INFORMS, vol. 33(2), pages 168-181, May.
    2. Alexander Armstrong & Joern Meissner, 2010. "Railway Revenue Management: Overview and Models (Operations Research)," Working Papers MRG/0019, Department of Management Science, Lancaster University, revised Jul 2010.
    3. Wang, Xinchang & Wang, Hua & Zhang, Xiaoning, 2016. "Stochastic seat allocation models for passenger rail transportation under customer choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 95-112.
    4. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    5. Raja Gopalakrishnan & Narayan Rangaraj, 2010. "Capacity Management on Long-Distance Passenger Trains of Indian Railways," Interfaces, INFORMS, vol. 40(4), pages 291-302, August.
    6. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    7. Michael F. Gorman, 2015. "Operations Research in Rail Pricing and Revenue Management," International Series in Operations Research & Management Science, in: Bruce W. Patty (ed.), Handbook of Operations Research Applications at Railroads, edition 127, chapter 0, pages 243-254, Springer.
    8. Pierre Nouvellet & Sangeeta Bhatia & Anne Cori & Kylie E. C. Ainslie & Marc Baguelin & Samir Bhatt & Adhiratha Boonyasiri & Nicholas F. Brazeau & Lorenzo Cattarino & Laura V. Cooper & Helen Coupland &, 2021. "Reduction in mobility and COVID-19 transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    10. Jin Qin & Yijia Zeng & Xia Yang & Yuxin He & Xuanke Wu & Wenxuan Qu, 2019. "Time-Dependent Pricing for High-Speed Railway in China Based on Revenue Management," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    11. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    12. Bharill, Rohit & Rangaraj, Narayan, 2008. "Revenue management in railway operations: A study of the Rajdhani Express, Indian Railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1195-1207, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    2. Xiang Zhao & Xinghua Shan & Jinfei Wu, 2023. "The Impact of Seat Resource Fragmentation on Railway Network Revenue Management," Networks and Spatial Economics, Springer, vol. 23(1), pages 135-177, March.
    3. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    5. Jin Qin & Xiqiong Li & Kang Yang & Guangming Xu, 2022. "Joint Optimization of Ticket Pricing Strategy and Train Stop Plan for High-Speed Railway: A Case Study," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    6. Xu, Guangming & Liu, Yihan & Gao, Yihan & Liu, Wei, 2023. "Integrated optimization of train stopping plan and seat allocation scheme for railway systems under equilibrium travel choice and elastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    7. Wang, Hua & Wang, Xinchang & Zhang, Xiaoning, 2017. "Dynamic resource allocation for intermodal freight transportation with network effects: Approximations and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 83-112.
    8. Xueyi Guan & Jin Qin & Chenghui Mao & Wenliang Zhou, 2023. "A Literature Review of Railway Pricing Based on Revenue Management," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    9. Yu Wang & Xinghua Shan & Hongye Wang & Junfeng Zhang & Xiaoyan Lv & Jinfei Wu, 2022. "Ticket Allocation Optimization of Fuxing Train Based on Overcrowding Control: An Empirical Study from China," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    10. Wang, Xinchang, 2016. "Stochastic resource allocation for containerized cargo transportation networks when capacities are uncertain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 334-357.
    11. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    12. Jin Qin & Wenxuan Qu & Xuanke Wu & Yijia Zeng, 2019. "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    13. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    14. Tingsong Wang & Jiawei Liu & Yadong Wang & Yong Jin & Shuaian Wang, 2024. "Dynamic Flexible Allocation of Slots in Container Line Transport," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    15. Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).
    16. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    17. Schlosser, Rainer & Gönsch, Jochen, 2023. "Risk-averse dynamic pricing using mean-semivariance optimization," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1151-1163.
    18. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    19. Jan Groeneveld & Judith Herrmann & Nikkel Mollenhauer & Leonard Dreeßen & Nick Bessin & Johann Schulze Tast & Alexander Kastius & Johannes Huegle & Rainer Schlosser, 2024. "Self-learning Agents for Recommerce Markets," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 66(4), pages 441-463, August.
    20. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián & Santos, Bruno F., 2022. "CHAIRS: A choice-based air transport simulator applied to airline competition and revenue management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 297-315.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:162:y:2022:i:c:p:104-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.