Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tra.2020.05.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hoogendoorn, S.P., 2005. "Unified approach to estimating free speed distributions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 709-727, September.
- David Branston, 1976. "Models of Single Lane Time Headway Distributions," Transportation Science, INFORMS, vol. 10(2), pages 125-148, May.
- Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
- D. J. Buckley, 1968. "A Semi-Poisson Model of Traffic Flow," Transportation Science, INFORMS, vol. 2(2), pages 107-133, May.
- David Branston, 1979. "A Method of Estimating the Free Speed Distribution for a Road," Transportation Science, INFORMS, vol. 13(2), pages 130-145, May.
- Elvik, Rune, 2010. "A restatement of the case for speed limits," Transport Policy, Elsevier, vol. 17(3), pages 196-204, May.
- Himes, Scott C. & Donnell, Eric T. & Porter, Richard J., 2013. "Posted speed limit: To include or not to include in operating speed models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 52(C), pages 23-33.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Moll, Sara & López, Griselda & García, Alfredo, 2024. "Speed limit management on two-lane rural roads shared by drivers and cyclists to improve safety and traffic operation," Transport Policy, Elsevier, vol. 147(C), pages 1-11.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raffaele Mauro & Andrea Pompigna, 2022. "A Statistically Based Model for the Characterization of Vehicle Interactions and Vehicle Platoons Formation on Two-Lane Roads," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
- Chiu, Yi-Chang & Zhou, Liang & Song, Houbing, 2010. "Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 152-174, January.
- Guohui Zhang & Yinhai Wang, 2014. "A Gaussian Kernel-Based Approach for Modeling Vehicle Headway Distributions," Transportation Science, INFORMS, vol. 48(2), pages 206-216, May.
- Li, Baibing, 2017. "Stochastic modeling for vehicle platoons (II): Statistical characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 378-393.
- Bari, Chintaman Santosh & Chandra, Satish & Dhamaniya, Ashish, 2022. "Service headway distribution analysis of FASTag lanes under mixed traffic conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
- Johansson , Fredrik, 2018. "Estimating interaction delay in bicycle traffic from point measurements," Working papers in Transport Economics 2018:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
- Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
- Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
- Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
- Lu Sun, 2016. "Stochastic Projection-Factoring Method Based on Piecewise Stationary Renewal Processes for Mid- and Long-Term Traffic Flow Modeling and Forecasting," Transportation Science, INFORMS, vol. 50(3), pages 998-1015, August.
- Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
- Raffaele Mauro & Federico Branco, 2013. "Update on the Statistical Analysis of Traffic Countings on Two-Lane Rural Highways," Modern Applied Science, Canadian Center of Science and Education, vol. 7(6), pages 1-67, June.
- Tscharaktschiew, Stefan & Reimann, Felix, 2023. "The economics of speed choice and control in the presence of driverless vehicle cruising and parking-as-a-substitute-for-cruising," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
- Hoogendoorn, S.P., 2005. "Unified approach to estimating free speed distributions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 709-727, September.
- Thiedig, Johannes, 2018. "An economic cost-benefit analysis of a general speed limit on German highways," Discussion Papers 2018/17, Free University Berlin, School of Business & Economics.
- Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
- Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
- Jie Yang & Jinliang Xu & Chao Gao & Guohua Bai & Linfang Xie & Menghui Li, 2019. "Modeling of the Relationship Between Speed Limit and Characteristic Speed of Expressway Traffic Flow," Sustainability, MDPI, vol. 11(17), pages 1-12, August.
More about this item
Keywords
Free flow speed distribution; Urban roads; Road characteristics; Posted speed limits; Probability to be constrained; Maximum likelihood estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:138:y:2020:i:c:p:283-298. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.