IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i8p709-727.html
   My bibliography  Save this article

Unified approach to estimating free speed distributions

Author

Listed:
  • Hoogendoorn, S.P.

Abstract

We present a new approach to estimating the distribution of free speeds based on the method of censored observations. The original distribution-free method of Kaplan-Meier is generalized to include partially censored data, i.e. observations that are censored with a certain probability. This is achieved using a composite time headway distribution model that is estimated as well. Using synthetic data, the method is validated. The method is applied using real life data collected at different two-lane rural roads in the Netherlands to establish free speed distributions and the differences between different vehicle-types.

Suggested Citation

  • Hoogendoorn, S.P., 2005. "Unified approach to estimating free speed distributions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 709-727, September.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:8:p:709-727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00137-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. J. Buckley, 1968. "A Semi-Poisson Model of Traffic Flow," Transportation Science, INFORMS, vol. 2(2), pages 107-133, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
    2. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    3. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
    4. Silvano, Ary P. & Koutsopoulos, Haris N. & Farah, Haneen, 2020. "Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 283-298.
    5. Johansson , Fredrik, 2018. "Estimating interaction delay in bicycle traffic from point measurements," Working papers in Transport Economics 2018:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaele Mauro & Andrea Pompigna, 2022. "A Statistically Based Model for the Characterization of Vehicle Interactions and Vehicle Platoons Formation on Two-Lane Roads," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Lu Sun, 2016. "Stochastic Projection-Factoring Method Based on Piecewise Stationary Renewal Processes for Mid- and Long-Term Traffic Flow Modeling and Forecasting," Transportation Science, INFORMS, vol. 50(3), pages 998-1015, August.
    3. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    4. Raffaele Mauro & Federico Branco, 2013. "Update on the Statistical Analysis of Traffic Countings on Two-Lane Rural Highways," Modern Applied Science, Canadian Center of Science and Education, vol. 7(6), pages 1-67, June.
    5. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    6. Chiu, Yi-Chang & Zhou, Liang & Song, Houbing, 2010. "Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 152-174, January.
    7. Guohui Zhang & Yinhai Wang, 2014. "A Gaussian Kernel-Based Approach for Modeling Vehicle Headway Distributions," Transportation Science, INFORMS, vol. 48(2), pages 206-216, May.
    8. Silvano, Ary P. & Koutsopoulos, Haris N. & Farah, Haneen, 2020. "Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 283-298.
    9. Li, Baibing, 2017. "Stochastic modeling for vehicle platoons (II): Statistical characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 378-393.
    10. Bari, Chintaman Santosh & Chandra, Satish & Dhamaniya, Ashish, 2022. "Service headway distribution analysis of FASTag lanes under mixed traffic conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    11. Sun, Lu & Jafaripournimchahi, Ammar & Kornhauser, Alain & Hu, Wushen, 2020. "A new higher-order viscous continuum traffic flow model considering driver memory in the era of autonomous and connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    12. Johansson , Fredrik, 2018. "Estimating interaction delay in bicycle traffic from point measurements," Working papers in Transport Economics 2018:18, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:8:p:709-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.