IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v114y2018ipap203-221.html
   My bibliography  Save this article

Minding the gap: Optimizing airport schedule displacement and acceptability

Author

Listed:
  • Zografos, Konstantinos G.
  • Androutsopoulos, Konstantinos N.
  • Madas, Michael A.

Abstract

Serious congestion problems at slot-controlled airports worldwide call for some action. Slot scheduling related research has mainly focused on scheduling models allocating airport capacity by optimising scheduling efficiency. However, existing literature does not capture the effect of slot allocation decisions on the acceptability of slot schedules. The objective of this paper is to investigate the trade-off between scheduling efficiency and the airlines’ dis-utility of slot schedules expressed by various metrics of schedule displacement. We develop and solve two bi-objective scheduling models considering different combinations of total and maximum acceptable slot displacement objectives. The proposed models are applied to real-world scheduling data. Substantial improvements in schedule acceptability metrics are achieved without sacrificing a lot in terms of scheduling efficiency. Sacrifices in scheduling efficiency increase the capability of the airport coordinator to allocate slots that are eventually acceptable and hence more intensively used.

Suggested Citation

  • Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N. & Madas, Michael A., 2018. "Minding the gap: Optimizing airport schedule displacement and acceptability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 203-221.
  • Handle: RePEc:eee:transa:v:114:y:2018:i:pa:p:203-221
    DOI: 10.1016/j.tra.2017.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416304670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Böttcher, Jan & Drexl, A. & Kolisch, R. & Salewski, F., 1999. "Project scheduling under partially renewable resource constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 345, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    3. Vikrant Vaze & Cynthia Barnhart, 2012. "Modeling Airline Frequency Competition for Airport Congestion Mitigation," Transportation Science, INFORMS, vol. 46(4), pages 512-535, November.
    4. Madas, Michael A. & Zografos, Konstantinos G., 2010. "Airport slot allocation: a time for change?," Transport Policy, Elsevier, vol. 17(4), pages 274-285, August.
    5. Lorenzo Castelli & Paola Pellegrini & Raffaele Pesenti, 2012. "Airport slot allocation in Europe: economic efficiency and fairness," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 6(1/2), pages 28-44.
    6. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    7. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    8. Alexandre Jacquillat & Amedeo R. Odoni, 2015. "An Integrated Scheduling and Operations Approach to Airport Congestion Mitigation," Operations Research, INFORMS, vol. 63(6), pages 1390-1410, December.
    9. Michael O. Ball & Lawrence M. Ausubel & Frank Berardino & Peter Cramton & George Donohue & Mark Hansen & Karla Hoffman, 2007. "Market-Based Alternatives for Managing Congestion at New York’s LaGuardia Airport," Papers of Peter Cramton 07mbac, University of Maryland, Department of Economics - Peter Cramton, revised 2007.
    10. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen, 2019. "Modeling the effects of airline slot hoarding behavior under the grandfather rights with use-it-or-lose-it rule," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 48-61.
    2. Jamie Fairbrother & Konstantinos G. Zografos & Kevin D. Glazebrook, 2020. "A Slot-Scheduling Mechanism at Congested Airports that Incorporates Efficiency, Fairness, and Airline Preferences," Transportation Science, INFORMS, vol. 54(1), pages 115-138, January.
    3. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    4. Keskin, Merve & Zografos, Konstantinos G., 2023. "Optimal network-wide adjustments of initial airport slot allocations with connectivity and fairness objectives," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Androutsopoulos, Konstantinos N. & Madas, Michael A., 2019. "Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 37-60.
    6. Liu, Wenjing & Zhao, Qiuhong & Delahaye, Daniel, 2022. "Research on slot allocation for airport network in the presence of uncertainty," Journal of Air Transport Management, Elsevier, vol. 104(C).
    7. Miranda, Victor A.P. & Oliveira, Alessandro V.M., 2018. "Airport slots and the internalization of congestion by airlines: An empirical model of integrated flight disruption management in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 201-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavusoglu, Sabriye Sera & Macário, Rosário, 2021. "Minimum delay or maximum efficiency? Rising productivity of available capacity at airports: Review of current practice and future needs," Journal of Air Transport Management, Elsevier, vol. 90(C).
    2. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo R. & Pita, João P., 2018. "An optimization approach for airport slot allocation under IATA guidelines," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 132-156.
    3. Androutsopoulos, Konstantinos N. & Manousakis, Eleftherios G. & Madas, Michael A., 2020. "Modeling and solving a bi-objective airport slot scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 135-151.
    4. Miranda, Victor A.P. & Oliveira, Alessandro V.M., 2018. "Airport slots and the internalization of congestion by airlines: An empirical model of integrated flight disruption management in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 201-219.
    5. Nuno Antunes Ribeiro & Alexandre Jacquillat & António Pais Antunes, 2019. "A Large-Scale Neighborhood Search Approach to Airport Slot Allocation," Transportation Science, INFORMS, vol. 53(6), pages 1772-1797, November.
    6. Androutsopoulos, Konstantinos N. & Madas, Michael A., 2019. "Being fair or efficient? A fairness-driven modeling extension to the strategic airport slot scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 37-60.
    7. Keskin, Merve & Zografos, Konstantinos G., 2023. "Optimal network-wide adjustments of initial airport slot allocations with connectivity and fairness objectives," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    8. Wang, Chun-Han & Zhang, Wenzhu & Dai, Yue & Lee, Yu-Ching, 2022. "Frequency competition among airlines on coordinated airports network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 484-495.
    9. Presto, Felix & Gollnick, Volker & Lau, Alexander & Lütjens, Klaus, 2022. "Flight frequency regulation and its temporal implications," Transport Policy, Elsevier, vol. 116(C), pages 106-118.
    10. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    11. Pellegrini, Paola & Bolić, Tatjana & Castelli, Lorenzo & Pesenti, Raffaele, 2017. "SOSTA: An effective model for the Simultaneous Optimisation of airport SloT Allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 34-53.
    12. Ribeiro, Nuno Antunes & Jacquillat, Alexandre & Antunes, António Pais & Odoni, Amedeo, 2019. "Improving slot allocation at Level 3 airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 32-54.
    13. Jacquillat, Alexandre & Odoni, Amedeo R., 2018. "A roadmap toward airport demand and capacity management," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 168-185.
    14. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen, 2019. "Modeling the effects of airline slot hoarding behavior under the grandfather rights with use-it-or-lose-it rule," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 48-61.
    15. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2021. "Optimising airport slot allocation considering flight-scheduling flexibility and total airport capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 50-87.
    16. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
    17. Katsigiannis, Fotios A. & Zografos, Konstantinos G., 2023. "Incorporating slot valuation in making airport slot scheduling decisions," European Journal of Operational Research, Elsevier, vol. 308(1), pages 436-454.
    18. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    19. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    20. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:114:y:2018:i:pa:p:203-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.