IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3460-d1213924.html
   My bibliography  Save this article

On the Fundamental Diagram for Freeway Traffic: Exploring the Lower Bound of the Fitting Error and Correcting the Generalized Linear Regression Models

Author

Listed:
  • Yidan Shangguan

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong)

  • Xuecheng Tian

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong)

  • Sheng Jin

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Kun Gao

    (Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden)

  • Xiaosong Hu

    (State Key Laboratory of Mechanical Transmission/Automotive Collaborative Innovation Center, Chongqing University, Chongqing 400044, China)

  • Wen Yi

    (Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Hong Kong)

  • Yu Guo

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong)

  • Shuaian Wang

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Hong Kong)

Abstract

In traffic flow, the relationship between speed and density exhibits decreasing monotonicity and continuity, which is characterized by various models such as the Greenshields and Greenberg models. However, some existing models, i.e., the Underwood and Northwestern models, introduce bias by incorrectly utilizing linear regression for parameter calibration. Furthermore, the lower bound of the fitting errors for all these models remains unknown. To address above issues, this study first proves the bias associated with using linear regression in handling the Underwood and Northwestern models and corrects it, resulting in a significantly lower mean squared error (MSE). Second, a quadratic programming model is developed to obtain the lower bound of the MSE for these existing models. The relative gaps between the MSEs of existing models and the lower bound indicate that the existing models still have a lot of potential for improvement.

Suggested Citation

  • Yidan Shangguan & Xuecheng Tian & Sheng Jin & Kun Gao & Xiaosong Hu & Wen Yi & Yu Guo & Shuaian Wang, 2023. "On the Fundamental Diagram for Freeway Traffic: Exploring the Lower Bound of the Fitting Error and Correcting the Generalized Linear Regression Models," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3460-:d:1213924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Xinkai & Liu, Henry X. & Geroliminis, Nikolas, 2011. "An empirical analysis on the arterial fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 255-266, January.
    2. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    3. Castillo, J. M. Del & Benítez, F. G., 1995. "On the functional form of the speed-density relationship--I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 373-389, October.
    4. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    5. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    6. Wu, Ning, 2002. "A new approach for modeling of Fundamental Diagrams," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 867-884, December.
    7. Castillo, J. M. Del & Benítez, F. G., 1995. "On the functional form of the speed-density relationship--II: Empirical investigation," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 391-406, October.
    8. Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
    9. Keyvan-Ekbatani, Mehdi & Kouvelas, Anastasios & Papamichail, Ioannis & Papageorgiou, Markos, 2012. "Exploiting the fundamental diagram of urban networks for feedback-based gating," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1393-1403.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    2. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    3. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    4. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    5. Wang, Haizhong & Li, Jia & Chen, Qian-Yong & Ni, Daiheng, 2011. "Logistic modeling of the equilibrium speed-density relationship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 554-566, July.
    6. Zhang, Jin & Qu, Xiaobo & Wang, Shuaian, 2018. "Reproducible generation of experimental data sample for calibrating traffic flow fundamental diagram," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 41-52.
    7. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    8. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    9. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    10. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    11. Zheng, Fangfang & Jabari, Saif Eddin & Liu, Henry X. & Lin, DianChao, 2018. "Traffic state estimation using stochastic Lagrangian dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 143-165.
    12. Alonso, Borja & Ibeas, Ángel & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Effects of traffic control regulation on Network Macroscopic Fundamental Diagram: A statistical analysis of real data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 136-151.
    13. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    14. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    15. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    16. Ahmed, Afzal & Ngoduy, Dong & Adnan, Muhammad & Baig, Mirza Asad Ullah, 2021. "On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 100-115.
    17. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    18. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    19. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    20. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3460-:d:1213924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.