IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v80y2011i4p289-297.html
   My bibliography  Save this article

Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition

Author

Listed:
  • Merchant, Sandra M.
  • Nagata, Wayne

Abstract

We study the influence of nonlocal intraspecies prey competition on the spatiotemporal patterns arising behind predator invasions in two oscillatory reaction–diffusion integro-differential models. We use three common types of integral kernels as well as develop a caricature system, to describe the influence of the standard deviation and kurtosis of the kernel function on the patterns observed. We find that nonlocal competition can destabilize the spatially homogeneous state behind the invasion and lead to the formation of complex spatiotemporal patterns, including stationary spatially periodic patterns, wave trains and irregular spatiotemporal oscillations. In addition, the caricature system illustrates how large standard deviation and low kurtosis facilitate the formation of these spatiotemporal patterns. This suggests that nonlocal competition may be an important mechanism underlying spatial pattern formation, particularly in systems where the competition between individuals varies over space in a platykurtic manner.

Suggested Citation

  • Merchant, Sandra M. & Nagata, Wayne, 2011. "Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition," Theoretical Population Biology, Elsevier, vol. 80(4), pages 289-297.
  • Handle: RePEc:eee:thpobi:v:80:y:2011:i:4:p:289-297
    DOI: 10.1016/j.tpb.2011.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580911000876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2011.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saralees Nadarajah, 2005. "A generalized normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalyan Manna & Vitaly Volpert & Malay Banerjee, 2020. "Dynamics of a Diffusive Two-Prey-One-Predator Model with Nonlocal Intra-Specific Competition for Both the Prey Species," Mathematics, MDPI, vol. 8(1), pages 1-28, January.
    2. Yang, Feng & Song, Yongli, 2022. "Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 159-168.
    3. Yang, Youwei & Wu, Daiyong & Shen, Chuansheng & Lu, Fengping, 2023. "Allee effect in a diffusive predator–prey system with nonlocal prey competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    4. Peng, Yahong & Zhang, Guoying, 2020. "Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 366-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    2. Müller K. & Richter W.-D., 2016. "Exact distributions of order statistics of dependent random variables from ln,p-symmetric sample distributions, n ∈ {3,4}," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-29, February.
    3. Sandi Baressi Šegota & Nikola Anđelić & Mario Šercer & Hrvoje Meštrić, 2022. "Dynamics Modeling of Industrial Robotic Manipulators: A Machine Learning Approach Based on Synthetic Data," Mathematics, MDPI, vol. 10(7), pages 1-17, April.
    4. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    5. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    7. Tran, Quang Van & Kukal, Jaromir, 2022. "A novel heavy tail distribution of logarithmic returns of cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    8. Jayles, Bertrand & Escobedo, Ramon & Cezera, Stéphane & Blanchet, Adrien & Kameda, Tatsuya & Sire, Clément & Théraulaz, Guy, 2020. "The impact of incorrect social information on collective wisdom in human groups," IAST Working Papers 20-106, Institute for Advanced Study in Toulouse (IAST).
    9. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    10. Li, Liuling & Mizrach, Bruce, 2010. "Tail return analysis of Bear Stearns' credit default swaps," Economic Modelling, Elsevier, vol. 27(6), pages 1529-1536, November.
    11. Mijeong Kim & Yanyuan Ma, 2019. "Semiparametric efficient estimators in heteroscedastic error models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 1-28, February.
    12. Jorge Munoz-Minjares & Osbaldo Vite-Chavez & Jorge Flores-Troncoso & Jorge M. Cruz-Duarte, 2021. "Alternative Thresholding Technique for Image Segmentation Based on Cuckoo Search and Generalized Gaussians," Mathematics, MDPI, vol. 9(18), pages 1-19, September.
    13. Roger W. Barnard & Kent Pearce & A. Alexandre Trindade, 2018. "When is tail mean estimation more efficient than tail median? Answers and implications for quantitative risk management," Annals of Operations Research, Springer, vol. 262(1), pages 47-65, March.
    14. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    15. Zhou, Tong & Peng, Yongbo, 2020. "Adaptive Bayesian quadrature based statistical moments estimation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Bertrand Jayles & Ramon Escobedo & Stéphane Cezera & Adrien Blanchet & Tatsuya Kameda & Clément Sire & Guy Théraulaz, 2020. "The impact of incorrect social information on collective wisdom in human groups," Post-Print hal-03019820, HAL.
    17. Robert Paige & A. Trindade & R. Wickramasinghe, 2014. "Extensions of saddlepoint-based bootstrap inference," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 961-981, October.
    18. Karol I. Santoro & Héctor J. Gómez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2022. "Extended Half-Power Exponential Distribution with Applications to COVID-19 Data," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    19. Fritzsch, Simon & Timphus, Maike & Weiß, Gregor, 2024. "Marginals versus copulas: Which account for more model risk in multivariate risk forecasting?," Journal of Banking & Finance, Elsevier, vol. 158(C).
    20. Liu, Xiaochun, 2019. "On tail fatness of macroeconomic dynamics," Journal of Macroeconomics, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:80:y:2011:i:4:p:289-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.