IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p101-d306173.html
   My bibliography  Save this article

Dynamics of a Diffusive Two-Prey-One-Predator Model with Nonlocal Intra-Specific Competition for Both the Prey Species

Author

Listed:
  • Kalyan Manna

    (Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India)

  • Vitaly Volpert

    (Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
    Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
    INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France)

  • Malay Banerjee

    (Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India)

Abstract

Investigation of interacting populations is an active area of research, and various modeling approaches have been adopted to describe their dynamics. Mathematical models of such interactions using differential equations are capable to mimic the stationary and oscillating (regular or irregular) population distributions. Recently, some researchers have paid their attention to explain the consequences of transient dynamics of population density (especially the long transients) and able to capture such behaviors with simple models. Existence of multiple stationary patches and settlement to a stable distribution after a long quasi-stable transient dynamics can be explained by spatiotemporal models with nonlocal interaction terms. However, the studies of such interesting phenomena for three interacting species are not abundant in literature. Motivated by these facts here we have considered a three species prey–predator model where the predator is generalist in nature as it survives on two prey species. Nonlocalities are introduced in the intra-specific competition terms for the two prey species in order to model the accessibility of nearby resources. Using linear analysis, we have derived the Turing instability conditions for both the spatiotemporal models with and without nonlocal interactions. Validation of such conditions indicates the possibility of existence of stationary spatially heterogeneous distributions for all the three species. Existence of long transient dynamics has been presented under certain parametric domain. Exhaustive numerical simulations reveal various scenarios of stabilization of population distribution due to the presence of nonlocal intra-specific competition for the two prey species. Chaotic oscillation exhibited by the temporal model is significantly suppressed when the populations are allowed to move over their habitat and prey species can access the nearby resources.

Suggested Citation

  • Kalyan Manna & Vitaly Volpert & Malay Banerjee, 2020. "Dynamics of a Diffusive Two-Prey-One-Predator Model with Nonlocal Intra-Specific Competition for Both the Prey Species," Mathematics, MDPI, vol. 8(1), pages 1-28, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:101-:d:306173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merchant, Sandra M. & Nagata, Wayne, 2011. "Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition," Theoretical Population Biology, Elsevier, vol. 80(4), pages 289-297.
    2. Tian, Canrong & Ling, Zhi & Zhang, Lai, 2017. "Nonlocal interaction driven pattern formation in a prey–predator model," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 73-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Feng & Song, Yongli, 2022. "Stability and spatiotemporal dynamics of a diffusive predator–prey system with generalist predator and nonlocal intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 159-168.
    2. Aybar, I. Kusbeyzi & Aybar, O.O. & Dukarić, M. & Ferčec, B., 2018. "Dynamical analysis of a two prey-one predator system with quadratic self interaction," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 118-132.
    3. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    4. Wu, Zeyan & Li, Jianjuan & Liu, Shuying & Zhou, Liuting & Luo, Yang, 2019. "A spatial predator–prey system with non-renewable resources," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 381-391.
    5. Yang, Youwei & Wu, Daiyong & Shen, Chuansheng & Lu, Fengping, 2023. "Allee effect in a diffusive predator–prey system with nonlocal prey competition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Peng, Yahong & Zhang, Guoying, 2020. "Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 366-378.
    7. Shivam, & Singh, Kuldeep & Kumar, Mukesh & Dubey, Ramu & Singh, Teekam, 2022. "Untangling role of cooperative hunting among predators and herd behavior in prey with a dynamical systems approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Chen, Mengxin & Wu, Ranchao & Chen, Liping, 2020. "Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system," Applied Mathematics and Computation, Elsevier, vol. 380(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:101-:d:306173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.