IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v87y2013icp75-89.html
   My bibliography  Save this article

Genetic hitchhiking in spatially extended populations

Author

Listed:
  • Barton, N.H.
  • Etheridge, A.M.
  • Kelleher, J.
  • Véber, A.

Abstract

When a mutation with selective advantage s spreads through a panmictic population, it may cause two lineages at a linked locus to coalesce; the probability of coalescence is exp(−2rT), where T∼log(2Ns)/s is the time to fixation, N is the number of haploid individuals, and r is the recombination rate. Population structure delays fixation, and so weakens the effect of a selective sweep. However, favourable alleles spread through a spatially continuous population behind a narrow wavefront; ancestral lineages are confined at the tip of this front, and so coalesce rapidly. In extremely dense populations, coalescence is dominated by rare fluctuations ahead of the front. However, we show that for moderate densities, a simple quasi-deterministic approximation applies: the rate of coalescence within the front is λ∼2g(η)/(Ï â„“), where Ï is the population density and â„“=σ2/s is the characteristic scale of the wavefront; g(η) depends only on the strength of random drift, η=Ï Ïƒs/2. The net effect of a sweep on coalescence also depends crucially on whether two lineages are ever both within the wavefront at the same time: even in the extreme case when coalescence within the front is instantaneous, the net rate of coalescence may be lower than in a single panmictic population. Sweeps can also have a substantial impact on the rate of gene flow. A single lineage will jump to a new location when it is hit by a sweep, with mean square displacement σeff2/σ2=(8/3)(L/â„“)(Λ/R); this can be substantial if the species’ range, L, is large, even if the species-wide rate of sweeps per map length, Λ/R, is small. This effect is half as strong in two dimensions. In contrast, the rate of coalescence between lineages, at random locations in space and on the genetic map, is proportional to (c/L)(Λ/R), where c is the wavespeed: thus, on average, one-dimensional structure is likely to reduce coalescence due to sweeps, relative to panmixis. In two dimensions, genes must move along the front before they can coalesce; this process is rapid, being dominated by rare fluctuations. This leads to a dramatically higher rate of coalescence within the wavefront than if lineages simply diffused along the front. Nevertheless, the net rate of coalescence due to a sweep through a two-dimensional population is likely to be lower than it would be with panmixis.

Suggested Citation

  • Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Genetic hitchhiking in spatially extended populations," Theoretical Population Biology, Elsevier, vol. 87(C), pages 75-89.
  • Handle: RePEc:eee:thpobi:v:87:y:2013:i:c:p:75-89
    DOI: 10.1016/j.tpb.2012.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912001359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louvet, Apolline, 2022. "Extinction threshold and large population limit of a plant metapopulation model with recurrent extinction events and a seed bank component," Theoretical Population Biology, Elsevier, vol. 145(C), pages 22-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foutel-Rodier, Félix & Etheridge, Alison M., 2020. "The spatial Muller’s ratchet: Surfing of deleterious mutations during range expansion," Theoretical Population Biology, Elsevier, vol. 135(C), pages 19-31.
    2. Louvet, Apolline, 2022. "Extinction threshold and large population limit of a plant metapopulation model with recurrent extinction events and a seed bank component," Theoretical Population Biology, Elsevier, vol. 145(C), pages 22-37.
    3. Fan, Wai-Tong (Louis) & Wakeley, John, 2024. "Latent mutations in the ancestries of alleles under selection," Theoretical Population Biology, Elsevier, vol. 158(C), pages 1-20.
    4. Kajántó, Sándor & Néda, Zoltán, 2018. "Universality in the coarse-grained fluctuations for a class of linear dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 215-220.
    5. Yuri V. Tyutyunov, 2023. "Spatial Demo-Genetic Predator–Prey Model for Studying Natural Selection of Traits Enhancing Consumer Motility," Mathematics, MDPI, vol. 11(15), pages 1-18, August.
    6. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    7. Máté, Gabriell & Néda, Zoltán, 2016. "The advantage of inhomogeneity — Lessons from a noise driven linearized dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 310-317.
    8. Goodsman, Devin W. & Cooke, Barry & Coltman, David W. & Lewis, Mark A., 2014. "The genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing," Theoretical Population Biology, Elsevier, vol. 98(C), pages 1-10.
    9. Wakano, Joe Y. & Kawasaki, Kohkichi & Shigesada, Nanako & Aoki, Kenichi, 2011. "Coexistence of individual and social learners during range expansion," Theoretical Population Biology, Elsevier, vol. 80(2), pages 132-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:87:y:2013:i:c:p:75-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.