IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12457.html
   My bibliography  Save this article

Stability and complexity in model meta-ecosystems

Author

Listed:
  • Dominique Gravel

    (Université de Sherbrooke)

  • François Massol

    (CNRS, Université de Lille - Sciences et Technologies, UMR 8198 Evo-Eco-Paleo (EEP), SPICI group
    UMR 5175 CEFE—Centre d'Ecologie Fonctionnelle et Evolutive (CNRS))

  • Mathew A. Leibold

    (University of Texas at Austin)

Abstract

The diversity of life and its organization in networks of interacting species has been a long-standing theoretical puzzle for ecologists. Ever since May’s provocative paper challenging whether ‘large complex systems [are] stable’ various hypotheses have been proposed to explain when stability should be the rule, not the exception. Spatial dynamics may be stabilizing and thus explain high community diversity, yet existing theory on spatial stabilization is limited, preventing comparisons of the role of dispersal relative to species interactions. Here we incorporate dispersal of organisms and material into stability–complexity theory. We find that stability criteria from classic theory are relaxed in direct proportion to the number of ecologically distinct patches in the meta-ecosystem. Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity. Our results highlight how biodiversity can be vulnerable to factors, such as landscape fragmentation and habitat loss, that isolate local communities.

Suggested Citation

  • Dominique Gravel & François Massol & Mathew A. Leibold, 2016. "Stability and complexity in model meta-ecosystems," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12457
    DOI: 10.1038/ncomms12457
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12457
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.