IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225810.html
   My bibliography  Save this article

Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations

Author

Listed:
  • Jialing Huang
  • Yihang Li
  • Yu Shi
  • Lihong Wang
  • Qing Zhou
  • Xiaohua Huang

Abstract

A positive interaction between plant populations is a type of population relationship formed during long-term evolution. This interaction can alleviate population competition, improve resource utilization in populations, and promote population harmony and community stability. However, cultivated plant populations may have insufficient time to establish a positive interaction, thereby hindering the formation of the positive interaction. As current studies have not fully addressed these issues, our study established soybean/wheat intercropping populations beneficial for growth and explored the effects of nutrient level and planting density on the positive interaction between the two crops. Changes across population modules in both sole cropping and intercropping populations of soybean and wheat were analyzed. Results using nutrient levels of ½- or ¼-strength Hoagland solution indicated that soybean/wheat intercropping population modules significantly increased at low planting densities (D20 and D26) and significantly decreased at high planting densities (D32 and D60). Therefore, as planting density increased, the modules of both intercropping populations initially increased before decreasing. Similarly, positive interaction initially strengthened before weakening. Moreover, at an intermediate planting density, the population modules reached their maxima, and the positive interaction was the strongest. Under the same planting density, ¼-strength Hoagland solution recorded better growth for the soybean/wheat intercropping population modules compared to results using the ½-strength Hoagland solution. These findings indicated that low nutrient level can increase the positive interaction of intercropping populations at a given planting density, and that environmental nutrient level and population planting densities constrain the positive interaction between soybean and wheat populations in the intercropping system. This study highlights issues that need to be addressed when constructing intercropping populations.

Suggested Citation

  • Jialing Huang & Yihang Li & Yu Shi & Lihong Wang & Qing Zhou & Xiaohua Huang, 2019. "Effects of nutrient level and planting density on population relationship in soybean and wheat intercropping populations," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
  • Handle: RePEc:plo:pone00:0225810
    DOI: 10.1371/journal.pone.0225810
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225810
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225810&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ragan M. Callaway & R. W. Brooker & Philippe Choler & Zaal Kikvidze & Christopher J. Lortie & Richard Michalet & Leonardo Paolini & Francisco I. Pugnaire & Beth Newingham & Erik T. Aschehoug & Cristin, 2002. "Positive interactions among alpine plants increase with stress," Nature, Nature, vol. 417(6891), pages 844-848, June.
    2. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kui Shen & Nan Song & Youngchul Kim & Chunqiao Tian & Shara D Rice & Michael J Gabrin & W Fraser Symmans & Lajos Pusztai & Jae K Lee, 2012. "A Systematic Evaluation of Multi-Gene Predictors for the Pathological Response of Breast Cancer Patients to Chemotherapy," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    2. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    3. Min Cai & Hui Dai & Yongyong Qiu & Yang Zhao & Ruyang Zhang & Minjie Chu & Juncheng Dai & Zhibin Hu & Hongbing Shen & Feng Chen, 2013. "SNP Set Association Analysis for Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    4. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    5. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    6. Emile du Plessis & Ulrich Fritsche, 2025. "New forecasting methods for an old problem: Predicting 147 years of systemic financial crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 3-40, January.
    7. Myoungsoo Kim & Wonik Choi & Youngjun Jeon & Ling Liu, 2019. "A Hybrid Neural Network Model for Power Demand Forecasting," Energies, MDPI, vol. 12(5), pages 1-17, March.
    8. Anish Agarwal & Keegan Harris & Justin Whitehouse & Zhiwei Steven Wu, 2023. "Adaptive Principal Component Regression with Applications to Panel Data," Papers 2307.01357, arXiv.org, revised Aug 2024.
    9. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
    10. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    11. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    12. Yu Takagi & Hirokazu Matsuda & Yukio Taniguchi & Hiroaki Iwaisaki, 2014. "Predicting the Phenotypic Values of Physiological Traits Using SNP Genotype and Gene Expression Data in Mice," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    13. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    14. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Ma, Chenjie & Menke, Jan-Hendrik & Dasenbrock, Johannes & Braun, Martin & Haslbeck, Matthias & Schmid, Karl-Heinz, 2019. "Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation," Applied Energy, Elsevier, vol. 256(C).
    16. Xu-Qing Liu & Xiao-Cai Wang & Li Tao & Feng-Xian An & Gui-Ren Jiang, 2024. "Alleviating conditional independence assumption of naive Bayes," Statistical Papers, Springer, vol. 65(5), pages 2835-2863, July.
    17. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
    18. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    19. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    20. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.