IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v149y2023icp39-47.html
   My bibliography  Save this article

Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities

Author

Listed:
  • Yamauchi, Atsushi
  • Ito, Koichi
  • Shibasaki, Shota
  • Namba, Toshiyuki

Abstract

The colonization model formulates competition among propagules for habitable sites to colonize, which serves as a mechanism enabling coexistence of multiple species. This model traditionally assumes that encounters between propagules and sites occur as mass action events, under which species distribution can eventually reach an equilibrium state with multiple species in a constant environment. To investigate the effects of encounter mode on species diversity, we analyzed community dynamics in the colonization model by varying encounter processes. The analysis indicated that equilibrium is approximately neutrally-stable under perfect ratio-dependent encounter, resulting in temporally continuous variation of species’ frequencies with irregular trajectories even under a constant environment. Although the trajectories significantly depend on initial conditions, they are considered to be “strange nonchaotic attractors†(SNAs) rather than chaos from the asymptotic growth rates of displacement. In addition, trajectories with different initial conditions remain different through time, indicating that the system involves an infinite number of SNAs. This analysis presents a novel mechanism for transient dynamics under competition.

Suggested Citation

  • Yamauchi, Atsushi & Ito, Koichi & Shibasaki, Shota & Namba, Toshiyuki, 2023. "Continuous irregular dynamics with multiple neutral trajectories permit species coexistence in competitive communities," Theoretical Population Biology, Elsevier, vol. 149(C), pages 39-47.
  • Handle: RePEc:eee:thpobi:v:149:y:2023:i:c:p:39-47
    DOI: 10.1016/j.tpb.2022.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580922000806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2022.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisa Benincà & Jef Huisman & Reinhard Heerkloss & Klaus D. Jöhnk & Pedro Branco & Egbert H. Van Nes & Marten Scheffer & Stephen P. Ellner, 2008. "Chaos in a long-term experiment with a plankton community," Nature, Nature, vol. 451(7180), pages 822-825, February.
    2. Marius-F. Danca & Nikolay Kuznetsov, 2021. "Hidden Strange Nonchaotic Attractors," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiet, Jérôme & Poggiale, Jean-Christophe & Maury, Olivier, 2016. "Modelling the community size-spectrum: recent developments and new directions," Ecological Modelling, Elsevier, vol. 337(C), pages 4-14.
    2. Grasman, Johan & van Nes, Egbert H. & Kersting, Kees, 2009. "Data-directed modelling of Daphnia dynamics in a long-term micro-ecosystem experiment," Ecological Modelling, Elsevier, vol. 220(3), pages 343-350.
    3. Adrien Bernard Bonache & Marc Filser, 2013. "Comment améliorer la prévision des ventes pour le marketing ? Les apports de la théorie du chaos," Post-Print hal-03822792, HAL.
    4. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).
    5. Ran, Jie & Li, Yu-Qin & Xiong, Yi-Bin, 2022. "On the dynamics of fractional q-deformation chaotic map," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    6. Alejandra Goldenberg Vilar & Timme Donders & Aleksandra Cvetkoska & Friederike Wagner-Cremer, 2018. "Seasonality modulates the predictive skills of diatom based salinity transfer functions," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    7. Karnatak, Rajat & Ramaswamy, Ram & Feudel, Ulrike, 2014. "Conjugate coupling in ecosystems: Cross-predation stabilizes food webs," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 48-57.
    8. Yan Huang & Jiansong Wan, 2022. "Hierarchical analysis of Chinese financial market based on manifold structure," Annals of Operations Research, Springer, vol. 315(2), pages 1135-1150, August.
    9. Occhipinti, Guido & Solidoro, Cosimo & Grimaudo, Roberto & Valenti, Davide & Lazzari, Paolo, 2023. "Marine ecosystem models of realistic complexity rarely exhibits significant endogenous non-stationary dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    11. Asir, M. Paul & Thamilmaran, K. & Prasad, Awadhesh & Feudel, Ulrike & Kuznetsov, N.V. & Shrimali, Manish Dev, 2023. "Hidden strange nonchaotic dynamics in a non-autonomous model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar & Sahu, Govind Prasad, 2021. "Chaos control of chaotic plankton dynamics in the presence of additional food, seasonality, and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    13. Adrien Bonache & Karen Moris, 2011. "Premières preuves empiriques de chaos dans les ventes de biens à la mode - First empirical evidence of chaos in the sales of fashion goods," Working Papers CREGO 1110602, Université de Bourgogne - CREGO EA7317 Centre de recherches en gestion des organisations.
    14. Ahmed A. Abd El-Latif & Janarthanan Ramadoss & Bassem Abd-El-Atty & Hany S. Khalifa & Fahimeh Nazarimehr, 2022. "A Novel Chaos-Based Cryptography Algorithm and Its Performance Analysis," Mathematics, MDPI, vol. 10(14), pages 1-22, July.
    15. Karunarathna, K.A.N.K. & Wells, Konstans & Clark, Nicholas J., 2024. "Modelling nonlinear responses of a desert rodent species to environmental change with hierarchical dynamic generalized additive models," Ecological Modelling, Elsevier, vol. 490(C).
    16. Wang, Lin & Tang, Ying & Wang, Rui-Wu & Shang, Xiao-Ya, 2019. "Re-evaluating the ‘plankton paradox’ using an interlinked empirical data and a food web model," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    17. Roelke, Daniel L. & Eldridge, Peter M., 2010. "Losers in the ‘Rock-Paper-Scissors’ game: The role of non-hierarchical competition and chaos as biodiversity sustaining agents in aquatic systems," Ecological Modelling, Elsevier, vol. 221(7), pages 1017-1027.
    18. Samuel R Bray & Bo Wang, 2020. "Forecasting unprecedented ecological fluctuations," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-17, June.
    19. Banas, Neil S., 2011. "Adding complex trophic interactions to a size-spectral plankton model: Emergent diversity patterns and limits on predictability," Ecological Modelling, Elsevier, vol. 222(15), pages 2663-2675.
    20. Karthikeyan Rajagopal & Suresh Kumarasamy & Sathiyadevi Kanagaraj & Anitha Karthikeyan, 2022. "Infinitely coexisting chaotic and nonchaotic attractors in a RLC shunted Josephson Junction with an AC bias current," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-9, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:149:y:2023:i:c:p:39-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.