IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v125y2019icp94-101.html
   My bibliography  Save this article

Spatial evolutionary dynamics produce a negative cooperation–population size relationship

Author

Listed:
  • Tekwa, Edward W.
  • Gonzalez, Andrew
  • Loreau, Michel

Abstract

Natural selection can favour cooperation, but it is unclear when cooperative populations should be larger than less cooperative ones. While experiments have shown that cooperation can increase population size, cooperation and population size can become negatively correlated if spatial processes affect both variables in opposite directions. We use a simple mathematical model of spatial common-pool resource production to investigate how space affects the cooperation–population size relationship. We find that only cooperation that is sufficiently beneficial to neighbours increases population size. However, spatial clustering variations can create a negative cooperation–population relationship between populations even when cooperation is highly beneficial, because clustering selects for cooperation but decreases population size. Individual-based simulations with variable individual movement rates produced variation in spatial clustering and the hypothesized negative cooperation–population relationships. These results suggest that variation in spatial clustering can limit the size of evolutionarily stable cooperating populations — an ecological dilemma of cooperation.

Suggested Citation

  • Tekwa, Edward W. & Gonzalez, Andrew & Loreau, Michel, 2019. "Spatial evolutionary dynamics produce a negative cooperation–population size relationship," Theoretical Population Biology, Elsevier, vol. 125(C), pages 94-101.
  • Handle: RePEc:eee:thpobi:v:125:y:2019:i:c:p:94-101
    DOI: 10.1016/j.tpb.2018.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580918301436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    4. Sonia Kéfi & Max Rietkerk & Concepción L. Alados & Yolanda Pueyo & Vasilios P. Papanastasis & Ahmed ElAich & Peter C. de Ruiter, 2007. "Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems," Nature, Nature, vol. 449(7159), pages 213-217, September.
    5. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    6. Smaldino, Paul E. & Schank, Jeffrey C., 2012. "Movement patterns, social dynamics, and the evolution of cooperation," Theoretical Population Biology, Elsevier, vol. 82(1), pages 48-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alam, Muntasir & Ida, Yuki & Tanimoto, Jun, 2021. "Abrupt epidemic outbreak could be well tackled by multiple pre-emptive provisions-A game approach considering structured and unstructured populations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    2. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    4. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    5. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    7. Alex McAvoy & Andrew Rao & Christoph Hauert, 2021. "Intriguing effects of selection intensity on the evolution of prosocial behaviors," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-21, November.
    8. Mahdi Hajihashemi & Keivan Aghababaei Samani, 2022. "Multi-strategy evolutionary games: A Markov chain approach," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
    9. David V McLeod & Troy Day, 2019. "Social evolution under demographic stochasticity," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-13, February.
    10. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    11. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    12. Sabin Lessard, 2011. "Effective Game Matrix and Inclusive Payoff in Group-Structured Populations," Dynamic Games and Applications, Springer, vol. 1(2), pages 301-318, June.
    13. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    14. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    15. Voelkl, Bernhard, 2015. "The evolution of generalized reciprocity in social interaction networks," Theoretical Population Biology, Elsevier, vol. 104(C), pages 17-25.
    16. Mullon, Charles & Peña, Jorge & Lehmann, Laurent, 2023. "Evolution of environmentally mediated social interactions under isolation by distance," TSE Working Papers 23-1476, Toulouse School of Economics (TSE).
    17. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    18. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    19. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    20. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:125:y:2019:i:c:p:94-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.