IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006739.html
   My bibliography  Save this article

Social evolution under demographic stochasticity

Author

Listed:
  • David V McLeod
  • Troy Day

Abstract

How social traits such as altruism and spite evolve remains an open question in evolutionary biology. One factor thought to be potentially important is demographic stochasticity. Here we provide a general theoretical analysis of the role of demographic stochasticity in social evolution. We show that the evolutionary impact of stochasticity depends on how the social action alters the recipient’s life cycle. If the action alters the recipient’s death rate, then demographic stochasticity always favours altruism and disfavours spite. On the other hand, if the action alters the recipient’s birth rate, then stochasticity can either favour or disfavour both altruism and spite depending on the ratio of the rate of population turnover to the population size. Finally, we also show that this ratio is critical to determining if demographic stochasticity can reverse the direction of selection upon social traits. Our analysis thus provides a general understanding of the role of demographic stochasticity in social evolution.Author summary: Explaining the evolution of social traits such as altruism and spite remains a key outstanding problem in evolutionary biology. Here we develop a simple theory for the effect of demographic stochasticity (random variation in an individual’s birth and death rates) on the evolution of social traits. Our results provide a clear set of predictions: whether a social trait is favoured or disfavoured is determined by how the social action alters the recipient’s life cycle. If the social action alters the recipient’s death rate, then altruism is favoured and spite disfavoured. If instead the social action alters the recipient’s birth rate, then both altruism and spite can be either favoured or disfavoured—the precise outcome depends upon the ratio of the population turnover rate to the population size.

Suggested Citation

  • David V McLeod & Troy Day, 2019. "Social evolution under demographic stochasticity," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-13, February.
  • Handle: RePEc:plo:pcbi00:1006739
    DOI: 10.1371/journal.pcbi.1006739
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006739
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006739&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    2. Ashleigh S. Griffin & Stuart A. West & Angus Buckling, 2004. "Cooperation and competition in pathogenic bacteria," Nature, Nature, vol. 430(7003), pages 1024-1027, August.
    3. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    4. Peter D. Taylor & Troy Day & Geoff Wild, 2007. "Evolution of cooperation in a finite homogeneous graph," Nature, Nature, vol. 447(7143), pages 469-472, May.
    5. Patrick Kennedy & Andrew D. Higginson & Andrew N. Radford & Seirian Sumner, 2018. "Altruism in a volatile world," Nature, Nature, vol. 555(7696), pages 359-362, March.
    6. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    7. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    2. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    5. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    6. Allen, Benjamin & McAvoy, Alex, 2024. "The coalescent in finite populations with arbitrary, fixed structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 150-169.
    7. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    8. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    9. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    10. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    11. Alex McAvoy & Andrew Rao & Christoph Hauert, 2021. "Intriguing effects of selection intensity on the evolution of prosocial behaviors," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-21, November.
    12. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    13. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    14. Fulin Guo, 2023. "Experience-weighted attraction learning in network coordination games," Papers 2310.18835, arXiv.org.
    15. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Sabin Lessard, 2011. "Effective Game Matrix and Inclusive Payoff in Group-Structured Populations," Dynamic Games and Applications, Springer, vol. 1(2), pages 301-318, June.
    17. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    18. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    19. Yan, Zeyuan & Zhao, Hui & Liang, Shu & Li, Li & Song, Yanjie, 2024. "Inter-layer feedback mechanism with reinforcement learning boosts the evolution of cooperation in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    20. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.