IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v123y2018icp35-44.html
   My bibliography  Save this article

Harnessing uncertainty to approximate mechanistic models of interspecific interactions

Author

Listed:
  • Clark, Adam Thomas
  • Neuhauser, Claudia

Abstract

Because the Lotka–Volterra competitive equations posit no specific competitive mechanisms, they are exceedingly general, and can theoretically approximate any underlying mechanism of competition near equilibrium. In practice, however, these models rarely generate accurate predictions in diverse communities. We propose that this difference between theory and practice may be caused by how uncertainty propagates through Lotka–Volterra systems. In approximating mechanistic relationships with Lotka–Volterra models, associations among parameters are lost, and small variation can correspond to large and unrealistic changes in predictions. We demonstrate that constraining Lotka–Volterra models using correlations among parameters expected from hypothesized underlying mechanisms can reintroduce some of the underlying structure imposed by those mechanisms, thereby improving model predictions by both reducing bias and increasing precision. Our results suggest that this hybrid approach may combine some of the generality of phenomenological models with the broader applicability and meaningful interpretability of mechanistic approaches. These methods could be useful in poorly understood systems for identifying important coexistence mechanisms, or for making more accurate predictions.

Suggested Citation

  • Clark, Adam Thomas & Neuhauser, Claudia, 2018. "Harnessing uncertainty to approximate mechanistic models of interspecific interactions," Theoretical Population Biology, Elsevier, vol. 123(C), pages 35-44.
  • Handle: RePEc:eee:thpobi:v:123:y:2018:i:c:p:35-44
    DOI: 10.1016/j.tpb.2018.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580917301879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marsaglia, George, 2006. "Ratios of Normal Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    2. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    3. Stokes, Barrie, 2012. "mathStatica 2.5," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(s01).
    4. Eloísa Díaz-Francés & Francisco Rubio, 2013. "On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables," Statistical Papers, Springer, vol. 54(2), pages 309-323, May.
    5. Caginalp, Carey & Caginalp, Gunduz, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Economics Letters, Elsevier, vol. 176(C), pages 79-82.
    6. Bagos Pantelis G, 2008. "A Unification of Multivariate Methods for Meta-Analysis of Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-35, October.
    7. Alvarez, Eduardo J. & Ribaric, Adrijan P., 2018. "An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA," Renewable Energy, Elsevier, vol. 115(C), pages 391-399.
    8. Gunduz Caginalp, 2020. "Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes," Papers 2011.08275, arXiv.org, revised Mar 2021.
    9. Frantisek Duris & Juraj Gazdarica & Iveta Gazdaricova & Lucia Strieskova & Jaroslav Budis & Jan Turna & Tomas Szemes, 2018. "Mean and variance of ratios of proportions from categories of a multinomial distribution," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-20, December.
    10. Tom Burr & Elisa Bonner & Kamil Krzysztoszek & Claude Norman, 2019. "Setting Alarm Thresholds in Measurements with Systematic and Random Errors," Stats, MDPI, vol. 2(2), pages 1-13, May.
    11. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    12. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    13. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    14. Carlotta Galeone & Angiola Pollastri, 2012. "Confidence intervals for the ratio of two means using the distribution of the quotient of two normals," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(3), pages 451-472, December.
    15. Hsin-Neng Hsieh & Hung-Yi Lu, 2020. "The generalized inference on the ratio of mean differences for fraction retention noninferiority hypothesis," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-12, June.
    16. Erhard Reschenhofer, 2017. "Using Ratios of Successive Returns for the Estimation of Serial Correlation in Return Series," Noble International Journal of Economics and Financial Research, Noble Academic Publsiher, vol. 2(9), pages 125-130, September.
    17. Gatta, Valerio & Marcucci, Edoardo & Scaccia, Luisa, 2015. "On finite sample performance of confidence intervals methods for willingness to pay measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 169-192.
    18. Michael Keane & Timothy Neal, 2021. "A New Perspective on Weak Instruments," Discussion Papers 2021-05a, School of Economics, The University of New South Wales.
    19. Stanley Luck, 2022. "A parametric framework for multidimensional linear measurement error regression," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:123:y:2018:i:c:p:35-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.