IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v103y2015icp44-59.html
   My bibliography  Save this article

Indirect effects of primary prey population dynamics on alternative prey

Author

Listed:
  • Barraquand, Frédéric
  • New, Leslie F.
  • Redpath, Stephen
  • Matthiopoulos, Jason

Abstract

We develop a theory of generalist predation showing how alternative prey species are affected by changes in both mean abundance and variability (coefficient of variation) of their predator’s primary prey. The theory is motivated by the indirect effects of cyclic rodent populations on ground-breeding birds, and developed through progressive analytic simplifications of an empirically-based model. It applies nonetheless to many other systems where primary prey have fast life-histories and can become superabundant, thus facilitating impact on alternative prey species and generating highly asymmetric interactions. Our results suggest that predator effects on alternative prey should generally decrease with mean primary prey abundance, and increase with primary prey variability (low to high CV)—unless predators have strong aggregative responses, in which case these results can be reversed. Approximations of models including predator dynamics (general numerical response with possible delays) confirm these results but further suggest that negative temporal correlation between predator and primary prey is harmful to alternative prey. Finally, we find that measurements of predator numerical responses are crucial to predict–even qualitatively–the response of ecosystems to changes in the dynamics of outbreaking prey species.

Suggested Citation

  • Barraquand, Frédéric & New, Leslie F. & Redpath, Stephen & Matthiopoulos, Jason, 2015. "Indirect effects of primary prey population dynamics on alternative prey," Theoretical Population Biology, Elsevier, vol. 103(C), pages 44-59.
  • Handle: RePEc:eee:thpobi:v:103:y:2015:i:c:p:44-59
    DOI: 10.1016/j.tpb.2015.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580915000374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2015.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyrre L. Kausrud & Atle Mysterud & Harald Steen & Jon Olav Vik & Eivind Østbye & Bernard Cazelles & Erik Framstad & Anne Maria Eikeset & Ivar Mysterud & Torstein Solhøy & Nils Chr. Stenseth, 2008. "Linking climate change to lemming cycles," Nature, Nature, vol. 456(7218), pages 93-97, November.
    2. Barraquand, Frédéric & Yoccoz, Nigel G., 2013. "When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates," Theoretical Population Biology, Elsevier, vol. 89(C), pages 1-11.
    3. Benaïm, Michel & Schreiber, Sebastian J., 2009. "Persistence of structured populations in random environments," Theoretical Population Biology, Elsevier, vol. 76(1), pages 19-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guiming & Getz, Lowell L. & Linzey, Alicia V. & Slade, Norman A. & Kesner, Michael H., 2012. "Fast and slow dynamics of northern small mammal populations," Ecological Modelling, Elsevier, vol. 225(C), pages 95-102.
    2. Michael Neuman & Lorenzo Chelleri & Thorsten Schuetze, 2021. "Post-Pandemic Urbanism: Criteria for a New Normal," Sustainability, MDPI, vol. 13(19), pages 1-6, September.
    3. Ellner, Stephen P. & Schreiber, Sebastian J., 2012. "Temporally variable dispersal and demography can accelerate the spread of invading species," Theoretical Population Biology, Elsevier, vol. 82(4), pages 283-298.
    4. Bansaye, Vincent & Lambert, Amaury, 2013. "New approaches to source–sink metapopulations decoupling demography and dispersal," Theoretical Population Biology, Elsevier, vol. 88(C), pages 31-46.
    5. Barraquand, Frédéric & Yoccoz, Nigel G., 2013. "When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates," Theoretical Population Biology, Elsevier, vol. 89(C), pages 1-11.
    6. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    7. Zhang, Zhibin & Yan, Chuan & Krebs, Charles J. & Stenseth, Nils Chr., 2015. "Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems," Ecological Modelling, Elsevier, vol. 312(C), pages 374-384.
    8. Bani-Yaghoub, Majid & Reed, Aaron, 2018. "A methodology to quantify the long-term changes in social networks of competing species," Ecological Modelling, Elsevier, vol. 368(C), pages 147-157.
    9. Oksana Revutskaya & Galina Neverova & Oksana Zhdanova & Efim Frisman, 2023. "The Evolutionary Dynamics of a Sex-Structured Population with Non-Overlapping Generations," Mathematics, MDPI, vol. 11(24), pages 1-24, December.
    10. Andreas Sundelöf & Valerio Bartolino & Mats Ulmestrand & Massimiliano Cardinale, 2013. "Multi-Annual Fluctuations in Reconstructed Historical Time-Series of a European Lobster (Homarus gammarus) Population Disappear at Increased Exploitation Levels," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    11. Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.
    12. Schreiber, Sebastian J., 2020. "When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie’s SAS-CFF model," Theoretical Population Biology, Elsevier, vol. 133(C), pages 141-149.
    13. Matvey Kulakov & Efim Frisman, 2023. "Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions," Mathematics, MDPI, vol. 11(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:103:y:2015:i:c:p:44-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.