IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v82y2012i4p283-298.html
   My bibliography  Save this article

Temporally variable dispersal and demography can accelerate the spread of invading species

Author

Listed:
  • Ellner, Stephen P.
  • Schreiber, Sebastian J.

Abstract

We analyze how temporal variability in local demography and dispersal combine to affect the rate of spread of an invading species. Our model combines state-structured local demography (specified by an integral or matrix projection model) with general dispersal distributions that may depend on the state of the individual or its parent. It allows very general patterns of stationary temporal variation in both local demography and in the frequency and distribution of dispersal distances. We show that expressions for the asymptotic spread rate and its sensitivity to parameters, which have been derived previously for less general models, continue to hold. Using these results we show that random temporal variability in dispersal can accelerate population spread. Demographic variability can further accelerate spread if it is positively correlated with dispersal variability, for example if high-fecundity years are also years in which juveniles tend to settle further away from their parents. A simple model for the growth and spread of patches of an invasive plant (perennial pepperweed, Lepidium latifolium) illustrates these effects and shows that they can have substantial impacts on the predicted speed of an invasion wave. Temporal variability in dispersal has received very little attention in both the theoretical and empirical literature on invasive species spread. Our results suggest that this needs to change.

Suggested Citation

  • Ellner, Stephen P. & Schreiber, Sebastian J., 2012. "Temporally variable dispersal and demography can accelerate the spread of invading species," Theoretical Population Biology, Elsevier, vol. 82(4), pages 283-298.
  • Handle: RePEc:eee:thpobi:v:82:y:2012:i:4:p:283-298
    DOI: 10.1016/j.tpb.2012.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912000445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benaïm, Michel & Schreiber, Sebastian J., 2009. "Persistence of structured populations in random environments," Theoretical Population Biology, Elsevier, vol. 76(1), pages 19-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reluga, Timothy C., 2016. "The importance of being atomic: Ecological invasions as random walks instead of waves," Theoretical Population Biology, Elsevier, vol. 112(C), pages 157-169.
    2. Erickson, Richard A. & Eager, Eric A. & Brey, Marybeth K. & Hansen, Michael J. & Kocovsky, Patrick M., 2017. "An integral projection model with YY-males and application to evaluating grass carp control," Ecological Modelling, Elsevier, vol. 361(C), pages 14-25.
    3. Marculis, Nathan G. & Evenden, Maya L. & Lewis, Mark A., 2020. "Modeling the dispersal–reproduction trade-off in an expanding population," Theoretical Population Biology, Elsevier, vol. 134(C), pages 147-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bansaye, Vincent & Lambert, Amaury, 2013. "New approaches to source–sink metapopulations decoupling demography and dispersal," Theoretical Population Biology, Elsevier, vol. 88(C), pages 31-46.
    2. Barraquand, Frédéric & Yoccoz, Nigel G., 2013. "When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates," Theoretical Population Biology, Elsevier, vol. 89(C), pages 1-11.
    3. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    4. Schreiber, Sebastian J., 2020. "When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie’s SAS-CFF model," Theoretical Population Biology, Elsevier, vol. 133(C), pages 141-149.
    5. Jaggi, Harman & Steinsaltz, David & Tuljapurkar, Shripad, 2024. "Temporal variability can promote migration between habitats," Theoretical Population Biology, Elsevier, vol. 158(C), pages 195-205.
    6. Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.
    7. Barraquand, Frédéric & New, Leslie F. & Redpath, Stephen & Matthiopoulos, Jason, 2015. "Indirect effects of primary prey population dynamics on alternative prey," Theoretical Population Biology, Elsevier, vol. 103(C), pages 44-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:82:y:2012:i:4:p:283-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.