IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp195-205.html
   My bibliography  Save this article

Temporal variability can promote migration between habitats

Author

Listed:
  • Jaggi, Harman
  • Steinsaltz, David
  • Tuljapurkar, Shripad

Abstract

Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many (≥ 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.

Suggested Citation

  • Jaggi, Harman & Steinsaltz, David & Tuljapurkar, Shripad, 2024. "Temporal variability can promote migration between habitats," Theoretical Population Biology, Elsevier, vol. 158(C), pages 195-205.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:195-205
    DOI: 10.1016/j.tpb.2024.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacopo Grilli & György Barabás & Stefano Allesina, 2015. "Metapopulation Persistence in Random Fragmented Landscapes," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-13, May.
    2. Benaïm, Michel & Schreiber, Sebastian J., 2009. "Persistence of structured populations in random environments," Theoretical Population Biology, Elsevier, vol. 76(1), pages 19-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellner, Stephen P. & Schreiber, Sebastian J., 2012. "Temporally variable dispersal and demography can accelerate the spread of invading species," Theoretical Population Biology, Elsevier, vol. 82(4), pages 283-298.
    2. Bansaye, Vincent & Lambert, Amaury, 2013. "New approaches to source–sink metapopulations decoupling demography and dispersal," Theoretical Population Biology, Elsevier, vol. 88(C), pages 31-46.
    3. Barraquand, Frédéric & Yoccoz, Nigel G., 2013. "When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates," Theoretical Population Biology, Elsevier, vol. 89(C), pages 1-11.
    4. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    5. Schreiber, Sebastian J., 2020. "When do factors promoting genetic diversity also promote population persistence? A demographic perspective on Gillespie’s SAS-CFF model," Theoretical Population Biology, Elsevier, vol. 133(C), pages 141-149.
    6. Liao, Limei & Shen, Yang & Liao, Jinbao, 2020. "Robustness of dispersal network structure to patch loss," Ecological Modelling, Elsevier, vol. 424(C).
    7. Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.
    8. Barraquand, Frédéric & New, Leslie F. & Redpath, Stephen & Matthiopoulos, Jason, 2015. "Indirect effects of primary prey population dynamics on alternative prey," Theoretical Population Biology, Elsevier, vol. 103(C), pages 44-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:195-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.