IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v79y2012i1p172-179.html
   My bibliography  Save this article

Forecasting technology diffusion with the Richards model

Author

Listed:
  • Marinakis, Yorgos D.

Abstract

The Richards model has a shape parameter m that allows it to fit any sigmoidal curve. This article demonstrates the ability of a modified Richards model to fit a variety of technology diffusion curvilinear data that would otherwise be fit by Bass, Gompertz, Logistic, and other models. The performance of the Richards model in forecasting was examined by analyzing fragments of data computed from the model itself, where the fragments simulated either an entire diffusion curve but with sparse data points, or only the initial trajectory of a diffusion curve but with dense data points. It was determined that accurate parameter estimates could be obtained when the data was sparse but traced out the curve at least up to the third inflection point (concave down), and when the data was dense and traced out the curve up to the first inflection point (concave up). Rogers' Innovation I, II and III are discussed in the context of the Richards model. Since m is scale independent, the model allows for a typology of diffusion curves and may provide an alternative to Rogers' typology.

Suggested Citation

  • Marinakis, Yorgos D., 2012. "Forecasting technology diffusion with the Richards model," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 172-179.
  • Handle: RePEc:eee:tefoso:v:79:y:2012:i:1:p:172-179
    DOI: 10.1016/j.techfore.2011.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162511000369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2011.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalakelis, Christos & Varoutas, Dimitris & Sphicopoulos, Thomas, 0. "Diffusion models of mobile telephony in Greece," Telecommunications Policy, Elsevier, vol. 32(3-4), pages 234-245, April.
    2. Bewley, Ronald & Fiebig, Denzil G., 1988. "A flexible logistic growth model with applications in telecommunications," International Journal of Forecasting, Elsevier, vol. 4(2), pages 177-192.
    3. Noh, Yong-Hwan & Yoo, Kyeongwon, 2008. "Internet, inequality and growth," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 1005-1016.
    4. Westland, J. Christopher & See-To, Eric Wing Kuen, 2007. "The short-run price-performance dynamics of microcomputer technologies," Research Policy, Elsevier, vol. 36(5), pages 591-604, June.
    5. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    6. Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
    7. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    8. Chu, Wen-Lin & Wu, Feng-Shang & Kao, Kai-Sheng & Yen, David C., 2009. "Diffusion of mobile telephony: An empirical study in Taiwan," Telecommunications Policy, Elsevier, vol. 33(9), pages 506-520, October.
    9. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    3. Bonnín Roca, Jaime & Vaishnav, Parth & Morgan, Granger M. & Fuchs, Erica & Mendonça, Joana, 2021. "Technology Forgiveness: Why emerging technologies differ in their resilience to institutional instability," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    4. Yongchao Zeng & Peiwu Dong & Yingying Shi & Yang Li, 2018. "On the Disruptive Innovation Strategy of Renewable Energy Technology Diffusion: An Agent-Based Model," Energies, MDPI, vol. 11(11), pages 1-21, November.
    5. Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
    6. Carlos E. Barbosa & Yuri Lima & Matheus Emerick & Fabio Ferman & Fernanda C. Ribeiro & Jano Moreira de Souza, 2023. "Supporting distributed and integrated execution of future‐oriented technology analysis," Futures & Foresight Science, John Wiley & Sons, vol. 5(1), March.
    7. Bodo, Peter, 2016. "MADness in the method: On the volatility and irregularity of technology diffusion," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 2-11.
    8. Gary, Robert F. & Fink, Matthias & Belousova, Olga & Marinakis, Yorgos & Tierney, Robert & Walsh, Steven T., 2020. "An introduction to the field of abundant economic thought," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    9. Marinakis, Y. & Harvey, H.A. & Walsh, S.T., 2021. "The emergence of peace engineering and innovation," Technological Forecasting and Social Change, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    2. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.
    3. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    4. Yamakawa, Peter & Rees, Gareth H. & Manuel Salas, José & Alva, Nikolai, 2013. "The diffusion of mobile telephones: An empirical analysis for Peru," Telecommunications Policy, Elsevier, vol. 37(6), pages 594-606.
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    7. Sergei Sidorov & Alexey Faizliev & Vladimir Balash & Olga Balash & Maria Krylova & Aleksandr Fomenko, 2021. "Extended innovation diffusion models and their empirical performance on real propagation data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 99-110, June.
    8. Thakur Dhakal & Dae-Eun Lim, 2020. "Understanding ICT adoption in SAARC member countries," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 67-80, April.
    9. Xiaoxia Fu & Ping Zhang & Juzhi Zhang, 2017. "Forecasting and Analyzing Internet Users of China with Lotka–Volterra Model," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-18, February.
    10. Baburin, Vyacheslav & Zemtsov, Stepan, 2014. "Diffussion of ICT-products and "five Russias"," MPRA Paper 68926, University Library of Munich, Germany, revised 10 May 2014.
    11. Lin, Chiun-Sin, 2013. "Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data," Economic Modelling, Elsevier, vol. 35(C), pages 207-213.
    12. Avila, Luz Angelica Pirir & Lee, Deok-Joo & Kim, Taegu, 2018. "Diffusion and competitive relationship of mobile telephone service in Guatemala: An empirical analysis," Telecommunications Policy, Elsevier, vol. 42(2), pages 116-126.
    13. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    14. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    15. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    16. Kurdgelashvili, Lado & Shih, Cheng-Hao & Yang, Fan & Garg, Mehul, 2019. "An empirical analysis of county-level residential PV adoption in California," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 321-333.
    17. Franklin M. Lartey, 2020. "Predicting Product Uptake Using Bass, Gompertz, and Logistic Diffusion Models: Application to a Broadband Product," Journal of Business Administration Research, Journal of Business Administration Research, Sciedu Press, vol. 9(2), pages 1-5, October.
    18. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    19. Guseo, Renato & Schuster, Reinhard, 2021. "Modelling dynamic market potential: Identifying hidden automata networks in the diffusion of pharmaceutical drugs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Arunabha Mukhopadhyay & Kallol K. Bagchi & Godwin John Udo, 2024. "Exploring the Main Factors Affecting Mobile Phone Growth Rates in Indian States," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 5746-5768, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:79:y:2012:i:1:p:172-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.