IDEAS home Printed from https://ideas.repec.org/a/eee/telpol/v37y2013i10p930-939.html
   My bibliography  Save this article

Multiple subscriptions of mobile telephony: Explaining the diffusion pattern using sampling data

Author

Listed:
  • Annafari, Mohammad Tsani

Abstract

Most mobile telephony diffusion studies use penetration rate based market data as the proxy and assume each adoption as the first adoption, an approach which often overlooks the multiple-subscription phenomenon. This paper, instead, aims to explain the diffusion of mobile telephony, taking the multiple-subscription phenomenon into consideration. For this purpose, time-series sampling-based penetration rate data are used as the proxy and simultaneous non-linear equations are applied to fundamental diffusion models, i.e. Gomperts, logistic and Bass models to model the diffusion pattern of each type of adopters, i.e. adopters with single subscriptions and one with multiple subscriptions. Taking the Swedish market as the case, the result shows that each type of adopters has a different diffusion pattern as a result of different saturation levels and delay factor for diffusion growth. Based on the generated diffusion curves, the remaining mobile telephony non-adopters in the Swedish population and the fraction of multiple subscribers and its growth trend can be estimated and relevant business and policy implications can be discussed.

Suggested Citation

  • Annafari, Mohammad Tsani, 2013. "Multiple subscriptions of mobile telephony: Explaining the diffusion pattern using sampling data," Telecommunications Policy, Elsevier, vol. 37(10), pages 930-939.
  • Handle: RePEc:eee:telpol:v:37:y:2013:i:10:p:930-939
    DOI: 10.1016/j.telpol.2013.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308596113000682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.telpol.2013.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michalakelis, Christos & Varoutas, Dimitris & Sphicopoulos, Thomas, 0. "Diffusion models of mobile telephony in Greece," Telecommunications Policy, Elsevier, vol. 32(3-4), pages 234-245, April.
    2. Gamboa, Luis Fernando & Otero, Jesús, 0. "An estimation of the pattern of diffusion of mobile phones: The case of Colombia," Telecommunications Policy, Elsevier, vol. 33(10-11), pages 611-620, November.
    3. Singh, Sanjay Kumar, 0. "The diffusion of mobile phones in India," Telecommunications Policy, Elsevier, vol. 32(9-10), pages 642-651, October.
    4. S. Mahendra Dev, 2008. "India," Chapters, in: Anis Chowdhury & Wahiduddin Mahmud (ed.), Handbook on the South Asian Economies, chapter 1, Edward Elgar Publishing.
    5. V. Srinivasan & Charlotte H. Mason, 1986. "Technical Note—Nonlinear Least Squares Estimation of New Product Diffusion Models," Marketing Science, INFORMS, vol. 5(2), pages 169-178.
    6. Wu, Feng-Shang & Chu, Wen-Lin, 2010. "Diffusion models of mobile telephony," Journal of Business Research, Elsevier, vol. 63(5), pages 497-501, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Ashutosh & Saha, Debashis, 2020. "“Forecasting and analysing the characteristics of 3G and 4G mobile broadband diffusion in India: A comparative evaluation of Bass, Norton-Bass, Gompertz, and logistic growth models”," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    2. Thakur Dhakal & Dae-Eun Lim, 2020. "Understanding ICT adoption in SAARC member countries," Letters in Spatial and Resource Sciences, Springer, vol. 13(1), pages 67-80, April.
    3. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    4. Barman, Hemanta & Dutta, Mrinal Kanti & Nath, Hiranya K., 2018. "The telecommunications divide among Indian states," Telecommunications Policy, Elsevier, vol. 42(7), pages 530-551.
    5. Eleni Laitsou & Antonios Kargas & Dimitris Varoutas, 2020. "Digital Competitiveness in the European Union Era: The Greek Case," Economies, MDPI, vol. 8(4), pages 1-33, October.
    6. Yamakawa, Peter & Rees, Gareth H. & Manuel Salas, José & Alva, Nikolai, 2013. "The diffusion of mobile telephones: An empirical analysis for Peru," Telecommunications Policy, Elsevier, vol. 37(6), pages 594-606.
    7. Riikonen, Antti & Smura, Timo & Kivi, Antero & Töyli, Juuso, 2013. "Diffusion of mobile handset features: Analysis of turning points and stages," Telecommunications Policy, Elsevier, vol. 37(6), pages 563-572.
    8. Gamboa, Luis Fernando & Otero, Jesús, 0. "An estimation of the pattern of diffusion of mobile phones: The case of Colombia," Telecommunications Policy, Elsevier, vol. 33(10-11), pages 611-620, November.
    9. Sang-Gun Lee & Eui-bang Lee & Chang-Gyu Yang, 2014. "Strategies for ICT product diffusion: the case of the Korean mobile communications market," Service Business, Springer;Pan-Pacific Business Association, vol. 8(1), pages 65-81, March.
    10. Jinah Yang & Daiki Min & Jeenyoung Kim, 2020. "The Use of Big Data and Its Effects in a Diffusion Forecasting Model for Korean Reverse Mortgage Subscribers," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    11. Sergei Sidorov & Alexey Faizliev & Vladimir Balash & Olga Balash & Maria Krylova & Aleksandr Fomenko, 2021. "Extended innovation diffusion models and their empirical performance on real propagation data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 99-110, June.
    12. Xiaoxia Fu & Ping Zhang & Juzhi Zhang, 2017. "Forecasting and Analyzing Internet Users of China with Lotka–Volterra Model," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-18, February.
    13. Baburin, Vyacheslav & Zemtsov, Stepan, 2014. "Diffussion of ICT-products and "five Russias"," MPRA Paper 68926, University Library of Munich, Germany, revised 10 May 2014.
    14. Marinakis, Yorgos D., 2012. "Forecasting technology diffusion with the Richards model," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 172-179.
    15. Gupta, Ruchita & Jain, Karuna, 2016. "Competition effect of a new mobile technology on an incumbent technology: An Indian case study," Telecommunications Policy, Elsevier, vol. 40(4), pages 332-342.
    16. Lin, Chiun-Sin, 2013. "Forecasting and analyzing the competitive diffusion of mobile cellular broadband and fixed broadband in Taiwan with limited historical data," Economic Modelling, Elsevier, vol. 35(C), pages 207-213.
    17. Lechman, Ewa & Kaur, Harleen, 2016. "Social development and ICT adoption. Developing world perspective," MPRA Paper 69354, University Library of Munich, Germany.
    18. Honoré, Bidiasse, 2019. "Diffusion of mobile telephony: Analysis of determinants in Cameroon," Telecommunications Policy, Elsevier, vol. 43(3), pages 287-298.
    19. Avila, Luz Angelica Pirir & Lee, Deok-Joo & Kim, Taegu, 2018. "Diffusion and competitive relationship of mobile telephone service in Guatemala: An empirical analysis," Telecommunications Policy, Elsevier, vol. 42(2), pages 116-126.
    20. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:telpol:v:37:y:2013:i:10:p:930-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.