IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v209y2024ics0040162524005389.html
   My bibliography  Save this article

Can artificial intelligence and green finance affect economic cycles?

Author

Listed:
  • Chishti, Muhammad Zubair
  • Dogan, Eyup
  • Binsaeed, Rima H.

Abstract

The COVID-19 recession and the Ukraine-Russia War (URW) crisis have added a new layer of complexity to global economic cycles, necessitating the evolution of economic systems and proactive responses to emerging economic challenges. In this context, the recent article introduces artificial intelligence (AI) as a new driver of economic cycles and analyzes its dynamic role alongside the Belt and Road Initiative (BRI), the Paris Agreement (PA), green finance (GB), and economic shocks (ES) in determining global economic cycles. The article employs novel econometric tools, namely the CAViaR-TVP-VAR model, the Quantile Coherence method, panel Quantile on Quantile Kernel-Based Regularized Least Squares (PQQKRLS), and the Quantile-Quantile Granger causality (QQGC) test for robust findings. The outcomes reveal that AI influences economic cycles in the short run while significantly mitigating these cycles in the medium and long run. Furthermore, the BRI exhibits a positive link with economic cycles during the short and medium run; however, it can contribute to economic stability in the long run by impeding economic fluctuations. Similarly, green finance and the PA show mixed influences across various time horizons, except for the long run, which confirms their negative association with economic cycles. Additionally, ES has a direct link with economic cycles across most periods. The robustness check based on the QQGC test and PQQKRLS method supports the main results. Our results identify AI, BRI, and the PA as new drivers of economic cycles with the potential to counter global economic cycles. Therefore, based on these findings, the study proposes several policy implications tailored to different time horizons.

Suggested Citation

  • Chishti, Muhammad Zubair & Dogan, Eyup & Binsaeed, Rima H., 2024. "Can artificial intelligence and green finance affect economic cycles?," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524005389
    DOI: 10.1016/j.techfore.2024.123740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524005389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524005389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.