IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v208y2024ics0040162524005018.html
   My bibliography  Save this article

The role of environmental innovation on ecological footprint in nations with high technology exports concentrations in international trade

Author

Listed:
  • Ersin, Özgür Ömer
  • Ustabaş, Ayfer
  • Usman, Ojonugwa

Abstract

This study focuses on four major high-technology exporting countries––the USA, Germany, France, and China––to explore the long and short-run associations among ecological footprint, environmental technology patents, high-technology exports, and economic growth. The sample covering 1988–2019 is subject to a set of structural breaks, including 2009 Global Recession in addition to uncertainty in the order of integration captured by unit root tests, which provide basis for novel Fourier ARDL and Fourier Toda-Yamamoto causality methods. The Fourier ARDL findings reveal the importance of environmental technology innovations in dampening the level of ecological footprints and promoting a more sustainable environment in the USA, Germany, and France, whereas more high-technology exports in international trade worsen the ecological footprints in these countries in addition to the negative effects of economic growth in all countries including China. In contrast, high-technology exports appear to mitigate ecological footprint in China, however, eco-friendly technologies fail to reduce ecological footprints as in other analysed nations. The causality tests indicate bidirectional and unidirectional causal relationships among variables with the exception of China where the neutrality hypothesis holds between economic growth and ecological patents and also high-technology exports and ecological patents. These findings provide important insights in achieving sustainable development.

Suggested Citation

  • Ersin, Özgür Ömer & Ustabaş, Ayfer & Usman, Ojonugwa, 2024. "The role of environmental innovation on ecological footprint in nations with high technology exports concentrations in international trade," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524005018
    DOI: 10.1016/j.techfore.2024.123703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524005018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerlagh, Reyer, 2007. "Measuring the value of induced technological change," Energy Policy, Elsevier, vol. 35(11), pages 5287-5297, November.
    2. Melike Bildirici & Fazıl Kayıkçı & Özgür Ömer Ersin, 2023. "Industry 4.0 and Renewable Energy Production Nexus: An Empirical Investigation of G20 Countries with Panel Quantile Method," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    3. Khan, Yasir & Hassan, Taimoor, 2024. "Promoting sustainable development: Evaluating the influence of natural resources, high-tech export and corruption on CO2 emissions in developing economies," Resources Policy, Elsevier, vol. 88(C).
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    6. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    7. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    8. David H. Romer & Jeffrey A. Frankel, 1999. "Does Trade Cause Growth?," American Economic Review, American Economic Association, vol. 89(3), pages 379-399, June.
    9. Melike Bildirici & Sema Yılmaz Genç & Özgür Ömer Ersin, 2023. "Effects of Fiscal and Monetary Policies, Energy Consumption and Economic Growth on CO 2 Emissions in the Turkish Economy: Nonlinear Bootstrapping NARDL and Nonlinear Causality Methods," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    10. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    11. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    12. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    13. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    14. Zaman, Khalid & Abd-el Moemen, Mitwali, 2017. "The influence of electricity production, permanent cropland, high technology exports, and health expenditures on air pollution in Latin America and the Caribbean Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1004-1010.
    15. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    16. Obobisa, Emma Serwaa & Chen, Haibo & Mensah, Isaac Adjei, 2022. "The impact of green technological innovation and institutional quality on CO2 emissions in African countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    17. Özgür ERSİN & Ayfer USTABAŞ & Tuğçe ACAR, 2022. "The Nonlinear Effects of High Technology Exports, R&D and Patents on Economic Growth: A Panel Threshold Approach to 35 OECD Countries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 26-44, April.
    18. Xinghua Wang & Zhengzheng Lee & Xin Xie, 2023. "Examining the impact of high technology exports on environmental sustainability? An empirical insight," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 36(3), pages 2195475-219, December.
    19. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    20. Wen-Cheng Lu & Kuang-Hsien Wang, 2024. "Effects of economic globalization, environment-related technology innovation, and industrial structure change on the ecological footprint of top 10 Asian technological innovation countries," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 14(4), pages 789-802, December.
    21. Du, Ling & Jiang, Hua & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Razzaq, Asif, 2022. "Asymmetric effects of high-tech industry and renewable energy on consumption-based carbon emissions in MINT countries," Renewable Energy, Elsevier, vol. 196(C), pages 1269-1280.
    22. Goh, Soo Khoon & Sam, Chung Yan & McNown, Robert, 2017. "Re-examining foreign direct investment, exports, and economic growth in asian economies using a bootstrap ARDL test for cointegration," Journal of Asian Economics, Elsevier, vol. 51(C), pages 12-22.
    23. Saban Nazlioglu & Alper Gormus & Ugur Soytas, 2019. "Oil Prices and Monetary Policy in Emerging Markets: Structural Shifts in Causal Linkages," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(1), pages 105-117, January.
    24. Ahmad, Najid & Youjin, Liu & Žiković, Saša & Belyaeva, Zhanna, 2023. "The effects of technological innovation on sustainable development and environmental degradation: Evidence from China," Technology in Society, Elsevier, vol. 72(C).
    25. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    26. Banerjee, Piyali & Arčabić, Vladimir & Lee, Hyejin, 2017. "Fourier ADL cointegration test to approximate smooth breaks with new evidence from Crude Oil Market," Economic Modelling, Elsevier, vol. 67(C), pages 114-124.
    27. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    28. Walter Enders & Junsoo Lee, 2012. "A Unit Root Test Using a Fourier Series to Approximate Smooth Breaks," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(4), pages 574-599, August.
    29. Seyi Saint Akadiri & Tomiwa Sunday Adebayo & Obioma Chinenyenwa Asuzu & Ijeoma Christina Onuogu & Izuchukwu Oji-Okoro, 2023. "Testing the role of economic complexity on the ecological footprint in China: a nonparametric causality-in-quantiles approach," Energy & Environment, , vol. 34(7), pages 2290-2316, November.
    30. Walid Hadhri & Rigas Arvanitis & Hatem M’Henni, 2016. "Determinants of innovation activities in small and open economies: the Lebanese business sector," Journal of Innovation Economics, De Boeck Université, vol. 0(3), pages 77-107.
    31. Changchun Guan & Tayyaba Rani & Zhao Yueqiang & Tahseen Ajaz & Murat Ismet Haseki, 2022. "Impact of tourism industry, globalization, and technology innovation on ecological footprints in G-10 countries," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 6688-6704, December.
    32. Eaton, Jonathan & Kortum, Samuel, 1999. "International Technology Diffusion: Theory and Measurement," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 537-570, August.
    33. Modupe Oluyemisi Oyebanji & Rui Alexandre Castanho & Sema Yilmaz Genc & Dervis Kirikkaleli, 2022. "Patents on Environmental Technologies and Environmental Sustainability in Spain," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    34. Nketiah, Emmanuel & Song, Huaming & Adjei, Mavis & Obuobi, Bright & Adu-Gyamfi, Gibbson, 2024. "Assessing the influence of research and development, environmental policies, and green technology on ecological footprint for achieving environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Musah, Mohammed & Onifade, Stephen Taiwo & Ankrah, Isaac & Gyamfi, Bright Akwasi & Amoako, George Kofi, 2024. "Achieving net-zero emission target in Africa: Are sustainable energy innovations and financialization crucial for environmental sustainability of sub-Saharan African state?," Applied Energy, Elsevier, vol. 364(C).
    2. Tarek Ghazouani, 2022. "The Effect of FDI Inflows, Urbanization, Industrialization, and Technological Innovation on CO2 Emissions: Evidence from Tunisia," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3265-3295, December.
    3. Eléazar Zerbo, 2015. "What determines the long-run growth in Sub-Saharan Africa? Exploring the role of energy, trade openness and financial development in six countries," Working Papers hal-01238524, HAL.
    4. Nasreen, Samia & Anwar, Sofia & Ozturk, Ilhan, 2017. "Financial stability, energy consumption and environmental quality: Evidence from South Asian economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1105-1122.
    5. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    7. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Erdogan, Sinan & Sarkodie, Samuel Asumadu, 2023. "The role of renewable and nuclear energy R&D expenditures and income on environmental quality in Germany: Scrutinizing the EKC and LCC hypotheses with smooth structural changes," Applied Energy, Elsevier, vol. 342(C).
    8. Nazlioglu, Saban & Gupta, Rangan & Gormus, Alper & Soytas, Ugur, 2020. "Price and volatility linkages between international REITs and oil markets," Energy Economics, Elsevier, vol. 88(C).
    9. Ali, Adnan & Ramakrishnan, Suresh & Faisal,, 2022. "Financial development and natural resources. Is there a stock market resource curse?," Resources Policy, Elsevier, vol. 75(C).
    10. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    11. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    12. Mohamed Arouri & Muhammad Shahbaz & Rattapon Onchang & Faridul Islam & Frédéric Teulon, 2014. "Environmental Kuznets Curve in Thailand: Cointegration and Causality Analysis," Working Papers 2014-204, Department of Research, Ipag Business School.
    13. Eléazar Zerbo, 2017. "Energy consumption and economic growth in Sub-Saharan African countries: Further evidence," Economics Bulletin, AccessEcon, vol. 37(3), pages 1720-1744.
    14. Gormus, Alper & Nazlioglu, Saban & Soytas, Ugur, 2018. "High-yield bond and energy markets," Energy Economics, Elsevier, vol. 69(C), pages 101-110.
    15. Pata, Ugur Korkut & Kartal, Mustafa Tevfik & Mukhtarov, Shahriyar, 2024. "Technological changes and carbon neutrality targets in European countries: A sustainability approach with Fourier approximations," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    16. Mariana Hatmanu & Cristina Cautisanu & Mihaela Ifrim, 2020. "The Impact of Interest Rate, Exchange Rate and European Business Climate on Economic Growth in Romania: An ARDL Approach with Structural Breaks," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    17. Nazlioglu, Saban & Gupta, Rangan & Bouri, Elie, 2020. "Movements in international bond markets: The role of oil prices," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 47-58.
    18. Mohamed Maher & Yanzhi Zhao, 2022. "Do Political Instability and Military Expenditure Undermine Economic Growth in Egypt? Evidence from the ARDL Approach," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(8), pages 956-979, November.
    19. Farooq, Umar & Dar, Arif Billah, 2022. "Is there a Kuznets curve for forest product footprint? – empirical evidence from India," Forest Policy and Economics, Elsevier, vol. 144(C).
    20. Shahbaz, Muhammad & Nasir, Muhammad Ali & Hille, Erik & Mahalik, Mantu Kumar, 2020. "UK's net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017)," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524005018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.