IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v208y2024ics0040162524004347.html
   My bibliography  Save this article

Employees' training experience in a metaverse environment? Feedback analysis using structural topic modeling

Author

Listed:
  • Saeed, Abubakr
  • Ali, Ashiq
  • Ashfaq, Saira

Abstract

The metaverse has been heralded as the next frontier for fueling strategic business opportunities. A recent surge in business investments in digital technologies-based training applications is witnessed. Metaverse is a technology in training and development landscape that intends to materialize a highly immersive experience by combining the virtual and the real world. Organizations are moving towards a metaverse environment to enhance the interactivity and flexibility of training while maintaining a high quality of their educational content and training plans. However, the existing scholarly work on metaverse tends to be more focused on employees' recruitment and retention functions of human resource, while the training and development function, particularly, the employees' training experience of the metaverse, is largely overlooked. Understanding employees' experiences is critical for businesses to achieve the desired training outcomes. Our study aims to fill this research gap by adopting a novel structural topic model text analysis method to analyze 889 employees' reviews about various training applications in metaverse environment. Specifically, we explored the employees' reviews of leading training platforms STRIVR, Spatial Computing, Mursion, Program ACE, Rewo, Gather, and ARKit. Our initial results reveal 9 topics, of which 5 relate to positive aspects and 4 are potential concerns. In particular, real-time collaboration, enhanced practicality, alignment with technology training, real-time feedback analytics, and customizable learning environments are positive, whereas accessibility and inclusivity, ethical considerations, privacy and security concerns, and cultural resistance are negative aspects. This study highlights the promising potential of the metaverse in improving the training and development functions within human resource management. By leveraging the novel efficiencies that the metaverse confers, firms can use these advancements to gain a competitive advantage.

Suggested Citation

  • Saeed, Abubakr & Ali, Ashiq & Ashfaq, Saira, 2024. "Employees' training experience in a metaverse environment? Feedback analysis using structural topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004347
    DOI: 10.1016/j.techfore.2024.123636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524004347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524004347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.