IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v200y2024ics0040162523007746.html
   My bibliography  Save this article

Effectiveness of ATM withdrawal forecasting methods under different market conditions

Author

Listed:
  • Suder, Marcin
  • Gurgul, Henryk
  • Barbosa, Belem
  • Machno, Artur
  • Lach, Łukasz

Abstract

This study aims to test the forecasting accuracy of recently implemented econometric tools as compared to the forecasting accuracy of widely used traditional models when predicting cash demand at ATMs. It also aims to verify whether the pandemic-driven change in market conditions impacted the predictive power of the tested models. Our conclusions were derived based on a data set that consisted of daily withdrawals from 61 ATMs of one of the largest European ATM networks operating in Krakow, Poland, and covered the period between January 2017 and April 2021.

Suggested Citation

  • Suder, Marcin & Gurgul, Henryk & Barbosa, Belem & Machno, Artur & Lach, Łukasz, 2024. "Effectiveness of ATM withdrawal forecasting methods under different market conditions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:tefoso:v:200:y:2024:i:c:s0040162523007746
    DOI: 10.1016/j.techfore.2023.123089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523007746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.123089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688.
    2. Bruno Karoubi & Régis Chenavaz & Corina Paraschiv, 2016. "Consumers’ perceived risk and hold and use of payment instruments," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1317-1329, March.
    3. Bátiz-Lazo, Bernardo & Haigh, Thomas & Stearns, David L., 2014. "How the Future Shaped the Past: The Case of the Cashless Society," Enterprise & Society, Cambridge University Press, vol. 15(1), pages 103-131, March.
    4. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
    5. Paulo Rodrigues & Paulo Esteves, 2010. "Calendar effects in daily ATM withdrawals," Economics Bulletin, AccessEcon, vol. 30(4), pages 2587-2597.
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    8. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    9. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    10. Teddy, S.D. & Ng, S.K., 2011. "Forecasting ATM cash demands using a local learning model of cerebellar associative memory network," International Journal of Forecasting, Elsevier, vol. 27(3), pages 760-776, July.
    11. Cronin, David & McInerney, Niall, 2022. "ATM Cash Withdrawals Before, During and After the Covid-19 Pandemic," Economic Letters 6/EL/22, Central Bank of Ireland.
    12. Marcin Suder & Tomasz Wójtowicz & Rafał Kusa & Henryk Gurgul, 2023. "Challenges for ATM management in times of market variability caused by the COVID-19 pandemic crisi," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 445-465, June.
    13. Gurgul Henryk & Suder Marcin, 2016. "Calendar and Seasonal Effects on the Size of Withdrawals from Atms Managed By Euronet," Statistics in Transition New Series, Polish Statistical Association, vol. 17(4), pages 691-722, December.
    14. Tiina Henttu-Aho, 2018. "The role of rolling forecasting in budgetary control systems: reactive and proactive types of planning," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 29(3), pages 327-360, December.
    15. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    16. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    17. Jacek Pietrucha & Grzegorz Maciejewski, 2020. "Precautionary Demand for Cash and Perceived Risk of Electronic Payments," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    18. Teddy, S.D. & Ng, S.K., 2011. "Forecasting ATM cash demands using a local learning model of cerebellar associative memory network," International Journal of Forecasting, Elsevier, vol. 27(3), pages 760-776.
    19. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    20. Saura, Jose Ramon & Palacios-Marqués, Daniel & Ribeiro-Soriano, Domingo, 2023. "Exploring the boundaries of open innovation: Evidence from social media mining," Technovation, Elsevier, vol. 119(C).
    21. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    22. Serhan Cevik, 2020. "Dirty money: Does the risk of infectious disease lower demand for cash?," International Finance, Wiley Blackwell, vol. 23(3), pages 460-471, December.
    23. Venkatesh, Kamini & Ravi, Vadlamani & Prinzie, Anita & Poel, Dirk Van den, 2014. "Cash demand forecasting in ATMs by clustering and neural networks," European Journal of Operational Research, Elsevier, vol. 232(2), pages 383-392.
    24. Yeliz Ekinci & Nicoleta Serban & Ekrem Duman, 2021. "Optimal ATM replenishment policies under demand uncertainty," Operational Research, Springer, vol. 21(2), pages 999-1029, June.
    25. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    26. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    27. Henryk Gurgul & Marcin Suder, 2018. "Impact of ATM location on its profi tability in Malopolskie and Podkarpackie provinces," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 19(1), pages 49-73.
    28. Juan-Gabriel Martínez-Navalón & María Fernández-Fernández & Fernanda Pedrosa Alberto, 2023. "Does privacy and ease of use influence user trust in digital banking applications in Spain and Portugal?," International Entrepreneurship and Management Journal, Springer, vol. 19(2), pages 781-803, June.
    29. Are Denstad & Einar Ulsund & Marielle Christiansen & Lars Magnus Hvattum & Gregorio Tirado, 2021. "Multi-objective optimization for a strategic ATM network redesign problem," Annals of Operations Research, Springer, vol. 296(1), pages 7-33, January.
    30. S. AL Wadi & Mohammad Almasarweh & Ahmed Atallah Alsaraireh, 2018. "Predicting Closed Price Time Series Data Using ARIMA Model," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 181-181, November.
    31. Gediminas Žylius, 2015. "Evaluation of ATM Cash Demand Process Factors Applied for Forecasting with CI Models," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 4(2), pages 211-235.
    32. Bruna Bruno & Marisa Faggini, 2022. "The cashless man: do preferences matter?," Journal of Evolutionary Economics, Springer, vol. 32(5), pages 1525-1544, November.
    33. Mattias Villani, 2009. "Steady-state priors for vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 630-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dieppe, Alistair & van Roye, Björn & Legrand, Romain, 2016. "The BEAR toolbox," Working Paper Series 1934, European Central Bank.
    2. Knut Are Aastveit & Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2017. "Have Standard VARS Remained Stable Since the Crisis?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 931-951, August.
    3. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    4. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.
    5. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    6. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    7. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    8. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    9. Oskar Gustafsson & Mattias Villani & Pär Stockhammar, 2023. "Bayesian optimization of hyperparameters from noisy marginal likelihood estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 577-595, June.
    10. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    11. Sebastian Ankargren & Mårten Bjellerup & Hovick Shahnazarian, 2017. "The importance of the financial system for the real economy," Empirical Economics, Springer, vol. 53(4), pages 1553-1586, December.
    12. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    13. Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    14. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    15. Julius Stakenas, 2018. "Slicing up inflation: analysis and forecasting of Lithuanian inflation components," Bank of Lithuania Working Paper Series 56, Bank of Lithuania.
    16. Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
    18. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    19. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
    20. Berg Tim Oliver, 2017. "Forecast accuracy of a BVAR under alternative specifications of the zero lower bound," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(2), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:200:y:2024:i:c:s0040162523007746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.