IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v198y2024ics0040162523006340.html
   My bibliography  Save this article

Unlocking information technology infrastructure for promoting climate resilience and environmental quality

Author

Listed:
  • Shobande, Olatunji A.
  • Ogbeifun, Lawrence
  • Tiwari, Aviral Kumar

Abstract

We examine the role of Information Technological Infrastructure (ITI) in promoting climate resilience and environmental quality in OECD countries. Our empirical strategy is framed in the advanced econometrics methodology. Our analysis begins with standard specification, which controls for unobserved factors in the panel data. We then explore the variables' long and short-run relationships using the Generalised Method of Moment dynamic family specifications. We also evaluate the heterogeneity drivers of environmental quality using Quantile via Moment. The analysis is also extended using alternative and complementary statistical procedures by Hausman–Taylor and Feasible Generalised Least Squares as robustness checks. Our findings indicate that ITI and renewable energy significantly mitigates carbon emissions and can be helpful in achieving a net-zero target. In contrast, the empirical evidence reveals that economic growth and non-renewable energy usage are harmful to the environment. The finding also suggests a significant degree of heterogeneity exists in the covariates on the conditional distribution of environmental quality and its driven factors. While the findings reaffirm the significance of ITI in ensuring careful planning and monitoring of critical infrastructure, they also show that ITI can be used to balance the entire system by creating resilience. We strongly suggest that policymakers should use ITI to spur innovation and drive better solutions for energy transition and environmental improvement.

Suggested Citation

  • Shobande, Olatunji A. & Ogbeifun, Lawrence & Tiwari, Aviral Kumar, 2024. "Unlocking information technology infrastructure for promoting climate resilience and environmental quality," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006340
    DOI: 10.1016/j.techfore.2023.122949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523006340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    2. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2017. "Environmental degradation, ICT and inclusive development in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 111(C), pages 353-361.
    3. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    4. Mikhail V. Chester & B. Shane Underwood & Constantine Samaras, 2020. "Keeping infrastructure reliable under climate uncertainty," Nature Climate Change, Nature, vol. 10(6), pages 488-490, June.
    5. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    6. Qamri, Ghulam Muhammad & Sheng, Bin & Adeel-Farooq, Rana Muhammad & Alam, Gazi Mahabubul, 2022. "The criticality of FDI in Environmental Degradation through financial development and economic growth: Implications for promoting the green sector," Resources Policy, Elsevier, vol. 78(C).
    7. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).
    8. Taiwo Akinlo & James Temitope Dada, 2021. "The moderating effect of foreign direct investment on environmental degradation-poverty reduction nexus: evidence from sub-Saharan African countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15764-15784, November.
    9. Hausman, Jerry A & Taylor, William E, 1981. "Panel Data and Unobservable Individual Effects," Econometrica, Econometric Society, vol. 49(6), pages 1377-1398, November.
    10. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    11. Shane Greenstein, 2020. "The Basic Economics of Internet Infrastructure," Journal of Economic Perspectives, American Economic Association, vol. 34(2), pages 192-214, Spring.
    12. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2018. "Enhancing ICT for environmental sustainability in sub-Saharan Africa," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 209-216.
    13. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    14. Chen, Zhongfei & Zhang, Xiao & Chen, Fanglin, 2021. "Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    15. Raufhon Salahodjaev & Kongratbay Sharipov & Nizomiddin Rakhmanov & Dilshod Khabirov, 2022. "Tourism, renewable energy and CO2 emissions: evidence from Europe and Central Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13282-13293, November.
    16. Jeffrey D. Sachs & Guido Schmidt-Traub & Mariana Mazzucato & Dirk Messner & Nebojsa Nakicenovic & Johan Rockström, 2019. "Six Transformations to achieve the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(9), pages 805-814, September.
    17. Lau, Chi Keung & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Li, Jing, 2023. "Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 122(C).
    18. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    19. Shahbaz, Muhammad & Destek, Mehmet Akif & Dong, Kangyin & Jiao, Zhilun, 2021. "Time-varying impact of financial development on carbon emissions in G-7 countries: Evidence from the long history," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    20. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    21. Michael Greenstone, 2002. "The Impacts of Environmental Regulations on Industrial Activity: Evidence from the 1970 and 1977 Clean Air Act Amendments and the Census of Manufactures," Journal of Political Economy, University of Chicago Press, vol. 110(6), pages 1175-1219, December.
    22. Maximilian Auffhammer, 2018. "Quantifying Economic Damages from Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 33-52, Fall.
    23. Hughes, Gordon & Chinowsky, Paul & Strzepek, Ken, 2010. "The costs of adaptation to climate change for water infrastructure in OECD countries," Utilities Policy, Elsevier, vol. 18(3), pages 142-153, September.
    24. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    25. Sarah Giest, 2017. "Big data analytics for mitigating carbon emissions in smart cities: opportunities and challenges," European Planning Studies, Taylor & Francis Journals, vol. 25(6), pages 941-957, June.
    26. Karim, Sitara & Naeem, Muhammad Abubakr & Shafiullah, Muhammad & Lucey, Brian M. & Ashraf, Sania, 2023. "Asymmetric relationship between climate policy uncertainty and energy metals: Evidence from cross-quantilogram," Finance Research Letters, Elsevier, vol. 54(C).
    27. Kumar, Nikhil & Poonia, Vikas & Gupta, B.B. & Goyal, Manish Kumar, 2021. "A novel framework for risk assessment and resilience of critical infrastructure towards climate change," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    28. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    29. Alicia H. Munnell, 1992. "Policy Watch: Infrastructure Investment and Economic Growth," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 189-198, Fall.
    30. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    31. Xu, Xin & Huang, Shupei & An, Haizhong, 2021. "Identification and causal analysis of the influence channels of financial development on CO2 emissions," Energy Policy, Elsevier, vol. 153(C).
    32. Zakarie Abdi Warsame, 2023. "The Significance of FDI Inflow and Renewable Energy Consumption in Mitigating Environmental Degradation in Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 443-453, January.
    33. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    34. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    35. Shobande, Olatunji A., 2023. "Rethinking social change: Does the permanent and transitory effects of electricity and solid fuel use predict health outcome in Africa?," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    36. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.
    37. Ren, Xiaohang & Zhang, Xiao & Yan, Cheng & Gozgor, Giray, 2022. "Climate policy uncertainty and firm-level total factor productivity: Evidence from China," Energy Economics, Elsevier, vol. 113(C).
    38. Appiah, Michael & Li, Mingxing & Naeem, Muhammad Abubakr & Karim, Sitara, 2023. "Greening the globe: Uncovering the impact of environmental policy, renewable energy, and innovation on ecological footprint," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
    39. Shobande, Olatunji A. & Ogbeifun, Lawrence, 2023. "Pooling cross-sectional and time series data for estimating causality between technological innovation, affluence and carbon dynamics: A comparative evidence from developed and developing countries," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    40. David I. Stern, 2004. "The Environmental Kuznets Curve," Chapters, in: John Proops & Paul Safonov (ed.), Modelling in Ecological Economics, chapter 9, pages 173-202, Edward Elgar Publishing.
    41. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yajun & Zhang, Xiuwu & Shen, Yang, 2024. "Technology-driven carbon reduction: Analyzing the impact of digital technology on China's carbon emission and its mechanism," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Shobande, Olatunji A. & Ogbeifun, Lawrence & Tiwari, Aviral Kumar, 2024. "Extricating the impacts of emissions trading system and energy transition on carbon intensity," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shobande, Olatunji A. & Ogbeifun, Lawrence & Tiwari, Aviral Kumar, 2024. "Extricating the impacts of emissions trading system and energy transition on carbon intensity," Applied Energy, Elsevier, vol. 357(C).
    2. Shobande, Olatunji A. & Ogbeifun, Lawrence & Apergis, Nicholas, 2024. "Crafting monetary policy beyond low carbon legacy," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 764-781.
    3. Shobande, Olatunji A. & Tiwari, Aviral Kumar & Ogbeifun, Lawrence & Trabelsi, Nader, 2024. "Demystifying circular economy and inclusive green growth for promoting energy transition and carbon neutrality in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 666-681.
    4. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    5. Njangang, Henri & Asongu, Simplice A. & Tadadjeu, Sosson & Nounamo, Yann & Kamguia, Brice, 2022. "Governance in mitigating the effect of oil wealth on wealth inequality: A cross-country analysis of policy thresholds," Resources Policy, Elsevier, vol. 76(C).
    6. Njangang, Henri & Beleck, Alim & Tadadjeu, Sosson & Kamguia, Brice, 2022. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Telecommunications Policy, Elsevier, vol. 46(2).
    7. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Working Papers of the African Governance and Development Institute. 21/057, African Governance and Development Institute..
    8. Pham Ngoc-Tham & Pham Trung-Kien & Cao Viet Hieu & Tran Ha Giang & Vo Xuan Vinh, 2020. "The Impact of International Trade on Environmental Quality: Implications for Law," Asian Journal of Law and Economics, De Gruyter, vol. 11(1), pages 1-12, April.
    9. Zheng, Xinye & Yu, Yihua & Wang, Jing & Deng, Huihui, 2013. "Identifying the determinants and spatial nexus of provincial carbon intensity in China: A dynamic spatial panel approach," MPRA Paper 56088, University Library of Munich, Germany.
    10. Ofori, Isaac K. & Gbolonyo, Emmanuel & Ojong, Nathanael, 2022. "Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 365, pages 1-48.
    11. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    12. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Research Africa Network Working Papers 21/057, Research Africa Network (RAN).
    13. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Simplice A. Asongu, 2017. "ICT, Openness and CO2 emissions in Africa," Research Africa Network Working Papers 17/055, Research Africa Network (RAN).
    15. Dang, Tam Hoang-Nhat & Balli, Faruk & Balli, Hatice Ozer & Nguyen, Hannah, 2024. "Firm productivity in the Energy-electricity sector over the last two decades with crisis: The role of cross-listing," Energy Economics, Elsevier, vol. 130(C).
    16. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2020. "Would environmental regulation improve the greenhouse gas benefits of natural gas use? A Chinese case study," Energy Economics, Elsevier, vol. 87(C).
    17. Balcilar, Mehmet & Usman, Ojonugwa & Ike, George N., 2023. "Operational behaviours of multinational corporations, renewable energy transition, and environmental sustainability in Africa: Does the level of natural resource rents matter?," Resources Policy, Elsevier, vol. 81(C).
    18. Kamguia, Brice & Keneck-Massil, Joseph & Nvuh-Njoya, Youssouf & Tadadjeu, Sosson, 2022. "Natural resources and innovation: Is the R&D sector cursed too?," Resources Policy, Elsevier, vol. 77(C).
    19. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    20. Huynh, Cong Minh & Phan, Thi Nga, 2024. "Climate change and income inequality: Does renewable energy matter?," Renewable Energy, Elsevier, vol. 233(C).

    More about this item

    Keywords

    Information technology infrastructure; Climate resilience; Energy transition; Dynamic panel;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications
    • N7 - Economic History - - Economic History: Transport, International and Domestic Trade, Energy, and Other Services
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.