IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v66y2021ics0160791x21001317.html
   My bibliography  Save this article

Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework

Author

Listed:
  • Razzaq, Asif
  • Wang, Yufeng
  • Chupradit, Supat
  • Suksatan, Wanich
  • Shahzad, Farrukh

Abstract

The role of reliable Carbon emission measures and relevant climate policy is imperative in realizing Sustainable Development Goals. A large extent of the literature concludes the emissions-mitigating effect of green innovations in a linear framework and ignored structural changes, technological revolutions, and socio-economic reforms that create non-linearity. Apart from that, there is a murky relationship between emissions and green innovation, where two-way links exist between both variables. Therefore, this study draws the inter-linkages between green technology innovation (GI) and carbon emissions (consumption-based and terrestrial emissions) in BRICS countries using monthly data from 1990 to 2017. Our preliminary findings strictly reject the preposition of data normality and highlight that the observed relationship is quantile-dependent. Therefore, a complete set of non-linear modeling is employed that included; Quantile unit root, Quantile cointegration, Quantile causality, and Quantile on Quantile regression to unveil hidden unit root, cointegration, causality, and association between variables. The results exhibit that the emissions-mitigating effect of GI is only pronounced at higher emissions quantiles in Brazil, China, India, and Russia, whereas at lower emissions quantile, GI is weekly or positively linked with carbon emissions. On the flipside, higher carbon emissions instigate GI across medium to higher emissions quantiles in Brazil, China, and India. Unlike them, Russia produces different outcomes, where higher emissions are associated with lower GI across all quantiles. The overall results suggest that GI (carbon emissions) mitigate (instigate) carbon emissions (GI) when a country is embodied with higher level of emissions.

Suggested Citation

  • Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001317
    DOI: 10.1016/j.techsoc.2021.101656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X21001317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2021.101656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    2. Sinha, Avik & Sengupta, Tuhin & Kalugina, Olga & Gulzar, Muhammad Awais, 2020. "Does distribution of energy innovation impact distribution of income: A quantile-based SDG modeling approach," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    3. Sinha, Avik & Mishra, Shekhar & Sharif, Arshian & Yarovaya, Larisa, 2021. "Does Green Financing help to improve the Environmental & Social Responsibility? Designing SDG framework through Advanced Quantile modelling," MPRA Paper 108150, University Library of Munich, Germany, revised 2021.
    4. Alun Gu & Fei Teng & Xiangzhao Feng, 2018. "Effects of pollution control measures on carbon emission reduction in China: evidence from the 11th and 12th Five-Year Plans," Climate Policy, Taylor & Francis Journals, vol. 18(2), pages 198-209, February.
    5. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    6. Shahbaz, Muhammad & Loganathan, Nanthakumar & Zeshan, Mohammad & Zaman, Khalid, 2015. "Does renewable energy consumption add in economic growth? An application of auto-regressive distributed lag model in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 576-585.
    7. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    8. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    9. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    12. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
    13. Asif Razzaq & Arshian Sharif & Paiman Ahmad & Kittisak Jermsittiparsert, 2021. "Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 176-193, January.
    14. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    15. Shahbaz, Muhammad & Lahiani, Amine & Abosedra, Salah & Hammoudeh, Shawkat, 2018. "The role of globalization in energy consumption: A quantile cointegrating regression approach," Energy Economics, Elsevier, vol. 71(C), pages 161-170.
    16. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    17. Rennings, Klaus & Ziegler, Andreas & Ankele, Kathrin & Hoffmann, Esther, 2006. "The influence of different characteristics of the EU environmental management and auditing scheme on technical environmental innovations and economic performance," Ecological Economics, Elsevier, vol. 57(1), pages 45-59, April.
    18. Sinha, Avik & Sengupta, Tuhin & Saha, Tanaya, 2020. "Technology policy and environmental quality at crossroads: Designing SDG policies for select Asia Pacific countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    19. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    20. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    21. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    22. Johansen, Soren, 1995. "Identifying restrictions of linear equations with applications to simultaneous equations and cointegration," Journal of Econometrics, Elsevier, vol. 69(1), pages 111-132, September.
    23. World Bank, 2006. "The Little Data Book 2006," World Bank Publications - Books, The World Bank Group, number 8155.
    24. Hasanov, Fakhri J. & Liddle, Brantley & Mikayilov, Jeyhun I., 2018. "The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting," Energy Economics, Elsevier, vol. 74(C), pages 343-350.
    25. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    26. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    27. Azevedo, Vitor G. & Sartori, Simone & Campos, Lucila M.S., 2018. "CO2 emissions: A quantitative analysis among the BRICS nations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 107-115.
    28. Liddle, Brantley, 2018. "Consumption-based accounting and the trade-carbon emissions nexus," Energy Economics, Elsevier, vol. 69(C), pages 71-78.
    29. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
    30. World Bank, 2006. "The Little Green Data Book 2006," World Bank Publications - Books, The World Bank Group, number 8165.
    31. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    32. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    33. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    34. Khan, Zeeshan & Ali, Muhsin & Jinyu, Liu & Shahbaz, Muhammad & Siqun, Yang, 2020. "Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries," Energy Economics, Elsevier, vol. 89(C).
    35. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    36. Hira Arain & Liyan Han & Arshian Sharif & Muhammad Saeed Meo, 2020. "Investigating the effect of inbound tourism on FDI: The importance of quantile estimations," Tourism Economics, , vol. 26(4), pages 682-703, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ya & Sinha, Avik & Ghosh, Vinit & Sengupta, Tuhin & Luo, Huawei, 2021. "Carbon Tax and Energy Innovation at Crossroads of Carbon Neutrality: Designing a Sustainable Decarbonization Policy," MPRA Paper 108185, University Library of Munich, Germany, revised 2021.
    2. Cheng Jin & Asif Razzaq & Faiza Saleem & Avik Sinha, 2022. "Asymmetric effects of eco-innovation and human capital development in realizing environmental sustainability in China: evidence from quantile ARDL framework," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4947-4970, December.
    3. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    4. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    5. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    6. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    7. Chishti, Muhammad Zubair & Sinha, Avik, 2022. "Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies," Technology in Society, Elsevier, vol. 68(C).
    8. Shahbaz, Muhammad & Sinha, Avik & Raghutla, Chandrashekar & Vo, Xuan Vinh, 2022. "Decomposing scale and technique effects of financial development and foreign direct investment on renewable energy consumption," Energy, Elsevier, vol. 238(PB).
    9. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    10. Sinha, Avik & Mishra, Shekhar & Sharif, Arshian & Yarovaya, Larisa, 2021. "Does Green Financing help to improve the Environmental & Social Responsibility? Designing SDG framework through Advanced Quantile modelling," MPRA Paper 108150, University Library of Munich, Germany, revised 2021.
    11. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    12. Ahsan Anwar & Avik Sinha & Arshian Sharif & Muhammad Siddique & Shoaib Irshad & Waseem Anwar & Summaira Malik, 2022. "The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6556-6576, May.
    13. Gangopadhyay, Partha & Das, Narasingha & Alam, G.M. Monirul & Khan, Uzma & Haseeb, Mohammad & Hossain, Md. Emran, 2023. "Revisiting the carbon pollution-inhibiting policies in the USA using the quantile ARDL methodology: What roles can clean energy and globalization play?," Renewable Energy, Elsevier, vol. 204(C), pages 710-721.
    14. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    15. Muhammad Asif Qureshi & Jawaid Ahmed Qureshi & Ammar Ahmed & Shahzad Qaiser & Ramsha Ali & Arshian Sharif, 2020. "The Dynamic Relationship Between Technology Innovation and Human Development in Technologically Advanced Countries: Fresh Insights from Quantiles-on-Quantile Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 555-580, November.
    16. Sinha, Avik & Sengupta, Tuhin & Saha, Tanaya, 2020. "Technology policy and environmental quality at crossroads: Designing SDG policies for select Asia Pacific countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    17. Meng Lingyan & Ze Zhao & Haider Ali Malik & Asif Razzaq & Hui An & Marria Hassan, 2022. "Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries," Energy & Environment, , vol. 33(4), pages 752-782, June.
    18. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    19. Ziwei Zhang & Qiang Zheng, 2023. "Sustainable development via environmental taxes and efficiency in energy: Evaluating trade adjusted carbon emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 415-425, February.
    20. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.