IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v195y2023ics0040162523004754.html
   My bibliography  Save this article

Comparing research trends with patenting activities in the biomedical sector: The case of dementia

Author

Listed:
  • Shin, Hyunjin
  • Woo, Hyun Goo
  • Sohn, Kyung-Ah
  • Lee, Sungjoo

Abstract

Publications and patents have long been regarded as useful sources of technological knowledge in the biomedical sector; thus, they have been analyzed to monitor technology trends and opportunities. However, most previous efforts have focused either on publications as outputs of scientific discovery or patents as outputs of technological development. Few have combined the two databases to derive meaningful implications for identifying new technology opportunities in the biomedical sector. In particular, transforming scientific discovery based on research activities into technological development leading further to commercialization is essential for clinical applications in this sector. Facilitating this process may help achieve efficient and successful research and development (R&D) that requires significant time and cost. Therefore, this study proposed an approach to compare research trends with patenting activities aimed at supporting technology commercialization in the biomedical sector. To achieve this, we employed a semantic analysis of publication data to identify the causal relationships between diseases. We also used co-occurrence analysis of patent data to extract co-treatment relationships between diseases. The analysis results were then integrated to identify diseases that require further drug development. The proposed approach was applied to dementia, and the findings may provide useful insights into technology opportunities for decision-makers in charge of technology planning and commercialization in the biomedical sector.

Suggested Citation

  • Shin, Hyunjin & Woo, Hyun Goo & Sohn, Kyung-Ah & Lee, Sungjoo, 2023. "Comparing research trends with patenting activities in the biomedical sector: The case of dementia," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004754
    DOI: 10.1016/j.techfore.2023.122790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523004754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mogoutov, Andrei & Cambrosio, Alberto & Keating, Peter & Mustar, Philippe, 2008. "Biomedical innovation at the laboratory, clinical and commercial interface: A new method for mapping research projects, publications and patents in the field of microarrays," Journal of Informetrics, Elsevier, vol. 2(4), pages 341-353.
    2. Grimaldi, Michele & Cricelli, Livio & Di Giovanni, Martina & Rogo, Francesco, 2015. "The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 286-302.
    3. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    4. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
    5. XueZhong Zhou & Jörg Menche & Albert-László Barabási & Amitabh Sharma, 2014. "Human symptoms–disease network," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    6. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    7. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2019. "Co-evolutionary and systemic study on the evolution of emerging stem cell-based therapies," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 324-339.
    8. Fiori, Giovana Maria Lanchoti & Basso, Fernanda Gisele & Porto, Geciane Silveira, 2022. "Cooperation in R&D in the pharmaceutical industry: Technological and clinical trial networks in oncology," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    9. Wang, Xuefeng & Zhang, Shuo & Liu, Yuqin & Du, Jian & Huang, Heng, 2021. "How pharmaceutical innovation evolves: The path from science to technological development to marketable drugs," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    11. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Nicola Nosengo, 2016. "Can you teach old drugs new tricks?," Nature, Nature, vol. 534(7607), pages 314-316, June.
    13. Kaihuang Zhang & Qinglan Qian & Yijing Zhao, 2020. "Evolution of Guangzhou Biomedical Industry Innovation Network Structure and Its Proximity Mechanism," Sustainability, MDPI, vol. 12(6), pages 1-20, March.
    14. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    15. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Moehrle, Martin G. & Caferoglu, Hüseyin, 2019. "Technological speciation as a source for emerging technologies. Using semantic patent analysis for the case of camera technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 776-784.
    17. Shuo Xu & Dongsheng Zhai & Feifei Wang & Xin An & Hongshen Pang & Yirong Sun, 2019. "A novel method for topic linkages between scientific publications and patents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(9), pages 1026-1042, September.
    18. Diana Hicks & Anthony Breitzman & Kimberly Hamilton & Francis Narin, 2000. "Research excellence and patented innovation," Science and Public Policy, Oxford University Press, vol. 27(5), pages 310-320, October.
    19. Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    2. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
    4. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    6. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    7. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    8. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    9. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    10. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    11. Roh, Taeyeoun & Yoon, Byungun, 2023. "Discovering technology and science innovation opportunity based on sentence generation algorithm," Journal of Informetrics, Elsevier, vol. 17(2).
    12. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    13. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    14. Patrick Wolf & Tobias Buchmann, 2021. "Analyzing development patterns in research networks and technology," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 55-81, April.
    15. Jing Ma & Yaohui Pan & Chih-Yi Su, 2022. "Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5497-5517, September.
    16. Yang, Guancan & Lu, Guoxuan & Xu, Shuo & Chen, Liang & Wen, Yuxin, 2023. "Which type of dynamic indicators should be preferred to predict patent commercial potential?," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    17. Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    18. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    19. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:195:y:2023:i:c:s0040162523004754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.