IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v175y2022ics0040162521007423.html
   My bibliography  Save this article

Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C

Author

Listed:
  • Cordroch, Luisa
  • Hilpert, Simon
  • Wiese, Frauke

Abstract

The decarbonisation of the German heating sector is challenging but necessary when aiming to limit global warming to 1.5 °C. Therefore, a fast reduction of the energy demand side and an increase of renewable energy on the supply side is required. However, related efficiency (energetic modernisation) and consistency (renewable energy) measures are limited through their potential, expansion speed, resources and acceptance. Sufficiency as an underrepresented measure has a high potential for heat demand reductions and can thus also relax pressure on the supply side. Nevertheless, sufficiency measures in the heating sector have not been investigated thoroughly. In this study we present scenarios for the German heating sector including efficiency, consistency and sufficiency measures and analyse their compliance with limiting global warming to 1.5 °C. The results of the model-based analysis show that efficiency measures and renewable energy in combination with heat pump expansion are not sufficient. Sufficiency measures, such as a reduced living space, have a high CO2-emission reduction potential and must be considered as one important pillar for a successful heat sector transformation.

Suggested Citation

  • Cordroch, Luisa & Hilpert, Simon & Wiese, Frauke, 2022. "Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521007423
    DOI: 10.1016/j.techfore.2021.121313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521007423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henrik Lund & Finn Arler & Poul Alberg Østergaard & Frede Hvelplund & David Connolly & Brian Vad Mathiesen & Peter Karnøe, 2017. "Simulation versus Optimisation: Theoretical Positions in Energy System Modelling," Energies, MDPI, vol. 10(7), pages 1-17, June.
    2. Samadi, Sascha & Gröne, Marie-Christine & Schneidewind, Uwe & Luhmann, Hans-Jochen & Venjakob, Johannes & Best, Benjamin, 2017. "Sufficiency in energy scenario studies: Taking the potential benefits of lifestyle changes into account," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 126-134.
    3. Le Gallic, Thomas & Assoumou, Edi & Maïzi, Nadia, 2017. "Future demand for energy services through a quantitative approach of lifestyles," Energy, Elsevier, vol. 141(C), pages 2613-2627.
    4. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    5. Lorek, Sylvia & Spangenberg, Joachim H., 2019. "Energy sufficiency through social innovation in housing," Energy Policy, Elsevier, vol. 126(C), pages 287-294.
    6. Stieß, Immanuel & Umbach-Daniel, Anja & Fischer, Corinna, 2019. "Smart small living? Social innovations for saving energy in senior citizens’ households by reducing living space," Energy Policy, Elsevier, vol. 133(C).
    7. Thomas Princen, 2003. "Principles for Sustainability: From Cooperation and Efficiency to Sufficiency," Global Environmental Politics, MIT Press, vol. 3(1), pages 33-50, February.
    8. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    9. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    10. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    11. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    2. Ahakwa, Isaac & Tackie, Evelyn Agba & Tackie, Faustina Korkor & Mangudhla, Tinashe & Baig, Jibal & Islam, Sartaj ul & Sarpong, Francis Atta, 2024. "Greening the path to carbon neutrality in the post-COP26 era: Embracing green energy, green innovation, and green human capital," Innovation and Green Development, Elsevier, vol. 3(3).
    3. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Mária Bartek-Lesi & Viktor Rácz & Bettina Dézsi, 2022. "Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    4. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    5. Jamshid Ali Turi & Joanna Rosak-Szyrocka & Maryam Mansoor & Hira Asif & Ahad Nazir & Daniel Balsalobre-Lorente, 2022. "Assessing Wind Energy Projects Potential in Pakistan: Challenges and Way Forward," Energies, MDPI, vol. 15(23), pages 1-21, November.
    6. Vernay, Anne-Lorène & Olsthoorn, Mark & Sebi, Carine & Gauthier, Caroline, 2023. "The identity trap of community renewable energy in France," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongxun & Du, Kerui & Li, Jianglong, 2019. "An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand," Energy Economics, Elsevier, vol. 80(C), pages 720-730.
    2. Amjadi, Golnaz & Lundgren, Tommy & Persson, Lars, 2018. "The Rebound Effect in Swedish Heavy Industry," Energy Economics, Elsevier, vol. 71(C), pages 140-148.
    3. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    4. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    6. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    8. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
    9. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    10. Adha, Rishan & Hong, Cheng-Yih & Firmansyah, M. & Paranata, Ade, 2021. "Rebound effect with energy efficiency determinants: a two-stage analysis of residential electricity consumption in Indonesia," MPRA Paper 110444, University Library of Munich, Germany.
    11. Dahlqvist, Anna & Lundgren, Tommy & Marklund, Per-Olov, 2017. "Assessing the Rebound Effect in Energy Intensive Industries: A Factor Demand Model Approach with Asymmetric Price Response," Working Papers 150, National Institute of Economic Research.
    12. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    13. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    14. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
    15. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    16. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    17. Kurt Kratena & Ina Meyer & Mark Sommer, 2013. "Energy Scenarios 2030. Model Projections of Energy Demand as a Basis to Quantify Austria's Greenhouse Gas Emissions," WIFO Studies, WIFO, number 46702, January.
    18. Guibentif, Thomas M.M. & Patel, Martin K. & Yilmaz, Selin, 2021. "Using energy saving deficit distributions to assess calculated, deemed and metered electricity savings estimations," Applied Energy, Elsevier, vol. 304(C).
    19. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Zell-Ziegler, Carina & Thema, Johannes & Best, Benjamin & Wiese, Frauke & Lage, Jonas & Schmidt, Annika & Toulouse, Edouard & Stagl, Sigrid, 2021. "Enough? The role of sufficiency in European energy and climate plans," Energy Policy, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521007423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.