Determinants of electronic waste generation in Bitcoin network: Evidence from the machine learning approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2021.121101
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019.
"Bitcoin price forecasting with neuro-fuzzy techniques,"
European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
- George S. Atsalakis & Ioanna G. Atsalaki & Fotios Pasiouras & Constantin Zopounidis, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," Post-Print hal-02879928, HAL.
- Das, Debojyoti & Dutta, Anupam, 2020. "Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?," Economics Letters, Elsevier, vol. 186(C).
- Su, Chi-Wei & Qin, Meng & Tao, Ran & Umar, Muhammad, 2020. "Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment?," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Islam, A.K.M. Najmul & Mäntymäki, Matti & Turunen, Marja, 2019. "Why do blockchains split? An actor-network perspective on Bitcoin splits," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
- Di Silvestre, Maria Luisa & Gallo, Pierluigi & Guerrero, Josep M. & Musca, Rossano & Riva Sanseverino, Eleonora & Sciumè, Giuseppe & Vásquez, Juan C. & Zizzo, Gaetano, 2020. "Blockchain for power systems: Current trends and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Li, Jingming & Li, Nianping & Peng, Jinqing & Cui, Haijiao & Wu, Zhibin, 2019. "Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies," Energy, Elsevier, vol. 168(C), pages 160-168.
- Rehman, Mobeen Ur & Kang, Sang Hoon, 2021. "A time–frequency comovement and causality relationship between Bitcoin hashrate and energy commodity markets," Global Finance Journal, Elsevier, vol. 49(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Ghosh, Indranil & Jana, Rabin K., 2024. "Clean energy stock price forecasting and response to macroeconomic variables: A novel framework using Facebook's Prophet, NeuralProphet and explainable AI," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Ali, Fahad & Khurram, Muhammad Usman & Sensoy, Ahmet & Vo, Xuan Vinh, 2024. "Green cryptocurrencies and portfolio diversification in the era of greener paths," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Wang, Ning & Guo, Ziyu & Shang, Dawei & Li, Keyuyang, 2024. "Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
- Ghabri, Yosra & Ben Rhouma, Oussama & Gana, Marjène & Guesmi, Khaled & Benkraiem, Ramzi, 2022. "Information transmission among energy markets, cryptocurrencies, and stablecoins under pandemic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Yazıcı, Ali Fırat & Olcay, Ali Bahadır & Arkalı Olcay, Gökçen, 2023. "A framework for maintaining sustainable energy use in Bitcoin mining through switching efficient mining hardware," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Anatolyy Dzyuba & Irina Solovyeva & Dmitry Konopelko, 2023. "Managing Electricity Costs in Industrial Mining and Cryptocurrency Data Centers," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 76-90, July.
- Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
- Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
- Ali, Fahad & Khurram, Muhammad Usman & Sensoy, Ahmet & Vo, Xuan Vinh, 2024. "Green cryptocurrencies and portfolio diversification in the era of greener paths," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
- Chi-Wei Su & Yuru Song & Hsu-Ling Chang & Weike Zhang & Meng Qin, 2023. "Could Cryptocurrency Policy Uncertainty Facilitate U.S. Carbon Neutrality?," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
- Kais Tissaoui & Taha Zaghdoudi & Sahbi Boubaker & Besma Hkiri & Mariem Talbi, 2024. "Testing the Nonlinear Long- and Short-Run Distributional Asymmetries Effects of Bitcoin Prices on Bitcoin Energy Consumption: New Insights through the QNARDL Model and XGBoost Machine-Learning Tool," Energies, MDPI, vol. 17(12), pages 1-19, June.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
- Elie Bouri & Rangan Gupta & Xuan Vinh Vo, 2022.
"Jumps in Geopolitical Risk and the Cryptocurrency Market: The Singularity of Bitcoin,"
Defence and Peace Economics, Taylor & Francis Journals, vol. 33(2), pages 150-161, February.
- Elie Bouri & Rangan Gupta & Xuan Vinh Vo, 2020. "Jumps in Geopolitical Risk and the Cryptocurrency Market: The Singularity of Bitcoin," Working Papers 202015, University of Pretoria, Department of Economics.
- Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
- Yating, Yang & Mughal, Nafeesa & Wen, Jun & Thi Ngan, Truong & Ramirez-Asis, Edwin & Maneengam, Apichit, 2022. "Economic performance and natural resources commodity prices volatility: Evidence from global data," Resources Policy, Elsevier, vol. 78(C).
- Malfuzi, A. & Mehr, A.S. & Rosen, Marc A. & Alharthi, M. & Kurilova, A.A., 2020. "Economic viability of bitcoin mining using a renewable-based SOFC power system to supply the electrical power demand," Energy, Elsevier, vol. 203(C).
- Lin William Cong & Zhiguo He & Jiasun Li & Wei Jiang, 2021.
"Decentralized Mining in Centralized Pools [Concentrating on the fall of the labor share],"
The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1191-1235.
- Lin William Cong & Zhiguo He & Jiasun Li, 2019. "Decentralized Mining in Centralized Pools," NBER Working Papers 25592, National Bureau of Economic Research, Inc.
- Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
More about this item
Keywords
Bitcoin; Blockchain; Electronic waste; Non-parametric statistics; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521005345. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.