IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2810-d1410957.html
   My bibliography  Save this article

Testing the Nonlinear Long- and Short-Run Distributional Asymmetries Effects of Bitcoin Prices on Bitcoin Energy Consumption: New Insights through the QNARDL Model and XGBoost Machine-Learning Tool

Author

Listed:
  • Kais Tissaoui

    (Management Information Systems Department, Applied College, University of Ha’il, Hail City P.O. Box 2440, Saudi Arabia)

  • Taha Zaghdoudi

    (Laboratoire de Recherche en Economie et Finance Appliquées, Carthage High Commercial Studies Institute, University of Carthage, Carthage 1054, Tunisia)

  • Sahbi Boubaker

    (Department of Computer & Network Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia)

  • Besma Hkiri

    (Department of Finance and Economics, College of Business, University of Jeddah, Jeddah 21959, Saudi Arabia)

  • Mariem Talbi

    (Management Information Systems Department, Applied College, University of Ha’il, Hail City P.O. Box 2440, Saudi Arabia)

Abstract

This study investigates the asymmetric impacts of Bitcoin prices on Bitcoin energy consumption. Two series are shown to be chaotic and non-linear using the BDS Independence test. To take into consideration this nonlinearity, we employed the QNARDL model as a traditional technique and Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost) as non-conventional approaches to study the link between Bitcoin energy usage and Bitcoin prices. Referring to QNARDL estimates, results show that the relationship between Bitcoin energy use and prices is asymmetric. Additionally, results demonstrate that changes in Bitcoin prices have a considerable effect, both short- and long-run, on energy consumption. As a result, any upsurge in the price of Bitcoin leads to an immediate boost in energy use. Furthermore, the short-term drop in Bitcoin values causes an increase in energy use. However, higher Bitcoin prices reduce energy use in the long run. Otherwise, every decline in Bitcoin prices leads to a long-term reduction in energy use. In addition, the performance metrics and convergence of the cost function provide evidence that the XGBoost model dominates the SVM model in terms of Bitcoin energy consumption forecasting. In addition, we analyze the effectiveness of several modeling approaches and discover that the XGBoost model (MSE: 0.52%; RMSE: 0.72 and R 2 : 96%) outperforms SVM (MSE: 4.89; RMSE: 2.21 and R 2 : 75%) in predicting. Results indicate that the forecast of Bitcoin energy consumption is more influenced by positive shocks to Bitcoin prices than negative shocks. This study gives insights into the policies that should be implemented, such as increasing the sustainable capacity, efficiency, and flexibility of mining operations, which would allow for the reduction of the negative impacts of Bitcoin price shocks on energy consumption.

Suggested Citation

  • Kais Tissaoui & Taha Zaghdoudi & Sahbi Boubaker & Besma Hkiri & Mariem Talbi, 2024. "Testing the Nonlinear Long- and Short-Run Distributional Asymmetries Effects of Bitcoin Prices on Bitcoin Energy Consumption: New Insights through the QNARDL Model and XGBoost Machine-Learning Tool," Energies, MDPI, vol. 17(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2810-:d:1410957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    2. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    3. Boz, Emine & Mendoza, Enrique G., 2014. "Financial innovation, the discovery of risk, and the U.S. credit crisis," Journal of Monetary Economics, Elsevier, vol. 62(C), pages 1-22.
    4. Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    5. Muhammad Mohsin & Sobia Naseem & Muhammad Zia‐ur‐Rehman & Sajjad Ahmad Baig & Shazia Salamat, 2023. "The crypto‐trade volume, GDP, energy use, and environmental degradation sustainability: An analysis of the top 20 crypto‐trader countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 651-667, January.
    6. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    7. Hong, Hui & Zhang, Cheng, 2023. "Bitcoin trading, economic growth, energy use, and CO2 emissions: An advanced panel study of emerging market economies," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 519-531.
    8. Dirk G. Baur & Thomas Dimpfl, 2019. "Price discovery in bitcoin spot or futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 803-817, July.
    9. Das, Debojyoti & Dutta, Anupam, 2020. "Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue?," Economics Letters, Elsevier, vol. 186(C).
    10. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    2. Yuze Li & Shangrong Jiang & Xuerong Li & Shouyang Wang, 2022. "Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-24, December.
    3. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    5. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    6. Nam Thanh Vu & Hung Quang Bui & Tuan Anh Pham & Duc Hong Vo, 2024. "Fintech development and environmental sustainability: Does income inequality matter?," Australian Economic Papers, Wiley Blackwell, vol. 63(2), pages 350-369, June.
    7. Luo, Di & Mishra, Tapas & Yarovaya, Larisa & Zhang, Zhuang, 2021. "Investing during a Fintech Revolution: Ambiguity and return risk in cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    8. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    9. Pengfei Wang & Wei Zhang & Xiao Li & Dehua Shen, 2019. "Trading volume and return volatility of Bitcoin market: evidence for the sequential information arrival hypothesis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(2), pages 377-418, June.
    10. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    11. Lepomäki, Laura & Kanniainen, Juho & Hansen, Henri, 2021. "Retaliation in Bitcoin networks," Economics Letters, Elsevier, vol. 203(C).
    12. Hu, Yang & Hou, Yang (Greg) & Oxley, Les & Corbet, Shaen, 2021. "Does blockchain patent-development influence Bitcoin risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 70(C).
    13. Cao, Guangxi & Xie, Wenhao, 2021. "The impact of the shutdown policy on the asymmetric interdependence structure and risk transmission of cryptocurrency and China’s financial market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Fang, Tong & Su, Zhi & Yin, Libo, 2020. "Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility," International Review of Financial Analysis, Elsevier, vol. 71(C).
    15. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    16. Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Stats, MDPI, vol. 6(4), pages 1-32, December.
    17. Sai Srikar Nimmagadda & Pawan Sasanka Ammanamanchi, 2019. "BitMEX Funding Correlation with Bitcoin Exchange Rate," Papers 1912.03270, arXiv.org.
    18. Sebastião, Helder & Godinho, Pedro, 2020. "Bitcoin futures: An effective tool for hedging cryptocurrencies," Finance Research Letters, Elsevier, vol. 33(C).
    19. Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "Exploring evolution trends in cryptocurrency study: From underlying technology to economic applications," Finance Research Letters, Elsevier, vol. 38(C).
    20. Wei Zhang & Pengfei Wang, 2020. "Investor attention and the pricing of cryptocurrency market," Evolutionary and Institutional Economics Review, Springer, vol. 17(2), pages 445-468, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2810-:d:1410957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.